We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Microfluidics Method to Speed Up Blood Analyses

By LabMedica International staff writers
Posted on 21 Aug 2024
Print article
Image: A microchip that could help reduce the process time for blood analysis is displayed by Selim Tanriverdi, a PhD student at KTH (Photo courtesy of David Callahan)
Image: A microchip that could help reduce the process time for blood analysis is displayed by Selim Tanriverdi, a PhD student at KTH (Photo courtesy of David Callahan)

Researchers have developed a new method to accelerate and potentially scale up the process of separating particles in fluids, a technique that could prove useful for analyzing cancer cells from blood.

This speedier and more precise method of elasto-inertial microfluidics was developed by a team led by researchers at KTH Royal Institute of Technology (Stockholm, Sweden) and involves controlling the movement of tiny particles in fluids by leveraging both the fluid's elastic properties and the inertial forces arising from fluid movement. The microfluidic device features specially engineered channels that accommodate larger volumes of fluid rapidly, making it ideal for applications requiring quick, continuous particle separation. These channels efficiently sort and line up particles, essential for distinguishing different particle types.

This high precision is achieved through the use of specially formulated fluids with high polymer concentrations, giving the fluid viscoelastic properties similar to egg whites that can both flow and rebound. This combination of forces allows for precise control over particle movement. The study, published in Nature Microsystems & Nanoengineering, found that larger particles are more manageable and maintain focus even as fluid flow increases. Smaller particles, however, require optimal flow rates to stay in line, though control can improve under appropriate conditions. The improved technique offers a diverse range of potential uses in medical testing and can help quickly sort cells or other particles in blood samples.

“We showed how the sample throughput can be increased within our microfluidic channel,” said Selim Tanriverdi, a PhD student at KTH and lead author of the study. “This would lower the process time for blood analysis, which is crucial for a patient.”

Related Links:
KTH Royal Institute of Technology

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A quick finger prick and few drops of blood on a card could make Alzheimer’s testing more accessible (Photo courtesy of Shutterstock)

Finger Prick Blood Test to Enable Early Alzheimer’s Detection

A new approach using a quick finger prick and a few drops of blood on a card that can be sent in regular mail could make Alzheimer’s testing much more accessible worldwide. The new test involves collecting... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.