We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Low-Cost, Portable Device Detects Colorectal and Prostate Cancer in An Hour

By LabMedica International staff writers
Posted on 28 Oct 2024
Print article
Image: The low-cost, portable device can detect colorectal and prostate cancer in as little as one hour (Photo courtesy of The University of Texas at El Paso)
Image: The low-cost, portable device can detect colorectal and prostate cancer in as little as one hour (Photo courtesy of The University of Texas at El Paso)

Early detection of cancer biomarkers before the disease progresses significantly enhances a patient’s chances of survival. Delays in testing, particularly in areas lacking access to expensive tools and instruments, can adversely affect a patient’s prognosis. The most commonly used commercial method for detecting cancer biomarkers, known as ELISA, requires costly instrumentation and can take 12 hours or more to process a sample. This delay is exacerbated in rural parts of the U.S. or in developing countries, where patient samples often need to be transported to larger cities equipped with specialized instruments, leading to increased cancer mortality rates. Researchers have now developed a portable device that can detect colorectal and prostate cancer more efficiently and affordably than existing methods. This device may prove especially beneficial in developing nations, which face higher cancer mortality rates partly due to obstacles in medical diagnosis.

The device, created by researchers at The University of Texas at El Paso (El Paso, TX, USA), employs a microfluidic design, allowing it to perform multiple functions using very small fluid volumes. It features an innovative “paper-in-polymer-pond” structure where patient blood samples are introduced into tiny wells and onto a specialized type of paper. This paper captures cancer protein biomarkers within the blood samples in just a few minutes. The paper then changes color, with the intensity of the color indicating the type of cancer detected and its stage of progression. Although the initial research has focused on prostate and colorectal cancers, the method could potentially be adapted for various cancer types. The device can analyze a sample in one hour, compared to the 16 hours required by some traditional methods.

According to results published in the journal Lab on a Chip, this device is also approximately 10 times more sensitive than traditional methods, even without the use of specialized instruments. This sensitivity allows it to detect cancer biomarkers present in smaller quantities, typical of early-stage cancer, which a less sensitive device might overlook. Before the device can be made available to the public, a prototype will need to be finalized, and it will require testing on patients in a clinical trial, which may take several years. It will also need final approval from the Food and Drug Administration before being used by healthcare professionals.

“Our new biochip device is low-cost — just a few dollars — and sensitive, which will make accurate disease diagnosis accessible to anyone, whether rich or poor,” said XiuJun (James) Li, Ph.D., a UTEP professor of chemistry and biochemistry. “It is portable, rapid and eliminates the need for specialized instruments.”

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.