We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Noninvasive Test Detects Malaria Without Blood Sample

By LabMedica International staff writers
Posted on 30 Oct 2024
Print article
Image: The Cytophone clinical prototype (Photo courtesy of Nat. Commun.; Yadem, A.C., Armstrong, J.N., Sarimollaoglu, M. et al.)
Image: The Cytophone clinical prototype (Photo courtesy of Nat. Commun.; Yadem, A.C., Armstrong, J.N., Sarimollaoglu, M. et al.)

Malaria remains a significant global health issue, with approximately 250 million cases and over 600,000 deaths reported annually. Nearly half of the world's population is at risk for malaria infection, particularly vulnerable groups such as children and pregnant women, who face the highest likelihood of severe illness and death from the disease. Currently, detecting this potentially fatal infection typically requires invasive blood samples, and existing testing methods have considerable limitations that hamper their effectiveness. A new technology now presents an exciting point-of-care (POC) diagnostic tool that has the potential to improve malaria detection and facilitate timely treatment.

Researchers at Yale School of Public Health (New Haven, CT, USA) and their collaborators have introduced a novel noninvasive test that could significantly transform malaria testing in low- and middle-income countries that are heavily impacted by this mosquito-borne illness. The innovative test does not require any blood samples, making it safer and more accessible. It utilizes a device called the Cytophone, which employs targeted lasers and ultrasound to identify malaria-infected cells in the bloodstream. Roughly the size of a tabletop printer, the Cytophone prototype can quickly ascertain the presence of malaria infection through a small, noninvasive probe applied to the back of a patient’s hand over a targeted vein.

The Cytophone's ability to detect infections noninvasively is made possible due to the accumulation of a by-product known as hemozoin in red blood cells infected with malaria parasites. This iron crystal by-product absorbs more light than normal hemoglobin when exposed to laser light, heating up and displaying magnetic and optical properties that the Cytophone probe can identify. In research published in Nature Communications, the team evaluated the Cytophone on 20 adult patients diagnosed with symptomatic malaria in Cameroon. The device successfully identified Plasmodium falciparum, the most prevalent and lethal malaria parasite, along with other less common species. The findings demonstrated that the Cytophone is sensitive enough to detect both high and low levels of parasites in infected blood, achieving 90% sensitivity and 69% specificity—comparable to, and in some cases exceeding, current gold standards for malaria testing that necessitate blood draws. Additionally, the device was capable of tracking the reduction of parasite levels when patients were retested post-treatment.

“Our study showed that the Cytophone was safe and had comparable diagnostic performance to current point-of-care options when compared to highly sensitive quantitative PCR as the gold standard,” said Jillian N. Armstrong, one of the study’s lead authors.

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Molecular Diagnostics

view channel
Image: The kit includes a container with a film, a compact optical device for attaching a smartphone, and a diagnostic app (Photo courtesy of KIST)

Urine-Based Bladder Cancer Diagnostic Kit to Reduce Need for Unnecessary Cystoscopies

Bladder cancer has a high cure rate of over 90% when detected early, but it is characterized by a recurrence rate of 70%, which requires continuous monitoring. Late-stage detection often results in major... Read more

Microbiology

view channel
Image: The QIAstat-Dx mini gastrointestinal panel has secured U.S. clearance to support year-round outpatient care (Photo courtesy of QIAGEN)

Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions

Acute infectious gastroenteritis is a major cause of outpatient visits and hospitalizations in the U.S., with over 179 million cases estimated annually. Now, a new gastrointestinal panel designed to provide... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.