We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection

By LabMedica International staff writers
Posted on 11 Dec 2024
Print article
Image: researchers combined DNA origami structures with solid-state nanopores to enhance the detection of proteins (Photo courtesy of 123RF)
Image: researchers combined DNA origami structures with solid-state nanopores to enhance the detection of proteins (Photo courtesy of 123RF)

Nanopores are tiny openings that can detect individual molecules as they pass through, making them ideal for analyzing biomolecules like DNA and proteins. However, detecting proteins at extremely low concentrations—such as those found in the early stages of diseases—has been challenging. Now, a new breakthrough in nanotechnology for biomolecule detection and analysis could open doors to more effective early disease detection methods.

In a study conducted at SMU Lyle (Dallas, TX, USA) and featured on the cover of Analytical Chemistry, researchers combined octahedral DNA origami structures with solid-state nanopores to enhance the detection of proteins, particularly those present in low concentrations. The researchers found that integrating DNA origami's precision with the strength of solid-state nanopores results in a "hybrid nanopore" system, offering more accurate and sensitive protein detection. DNA origami is a technique in which DNA strands are folded into specific shapes, such as an octahedron, to improve the nanopore’s capacity to capture and detect proteins. In their study, the researchers used holo human serum transferrin as a model protein, demonstrating that this hybrid nanopore system outperformed traditional nanopores in both sensitivity and detection accuracy.

Many diseases, including cancer and neurodegenerative disorders, are marked by proteins present in very small quantities, making them difficult to detect in the early stages. The hybrid nanopore's ability to detect these low-abundance proteins could lead to earlier diagnoses and more effective treatment outcomes. Moving forward, the research team plans to refine the DNA origami structure and nanopore configurations to further improve sensitivity and expand the range of detectable biomolecules. This innovative approach could revolutionize fields like drug discovery, disease diagnostics, and fundamental biological research.

“This work could pave the way for developing advanced biosensing technologies, with potential applications in biomedical research and diagnostic tools – especially for diseases marked by low-abundance protein biomarkers,” said SMU Lyle mechanical engineering graduate student Kamruzzaman Joty.

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Gastrointestinal Infection Test
REALQUALITY ETEC/EIEC
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: Three newly identified protein biomarkers have the potential to improve diagnostic tools for colorectal cancer (Photo courtesy of Adobe Stock)

New Protein Biomarkers to Improve Diagnostic Tools for Colorectal Cancer

Colorectal cancer is a leading cause of cancer-related deaths globally, and its incidence is expected to rise in the coming decades. This cancer begins when abnormal cells grow uncontrollably in the large... Read more

Microbiology

view channel
Image: The CRISPR-TB Blood Test provides accurate, rapid, and cost-effective diagnosis (Photo courtesy of 123RF)

CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening

Tuberculosis (TB) continues to be a leading cause of global mortality, with 10.6 million new cases and 1.6 million deaths annually. Diagnosing TB remains difficult, with smear microscopy offering only... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.