We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultrasensitive Test Detects and Serially Monitors Intact Virus Levels in COVID-19 Patients

By LabMedica International staff writers
Posted on 24 Jan 2025
Print article
Image: Clinical workflow and viral detection using the virusHB-Chip (Photo courtesy of Science Advances, DOI:10.1126/sciadv.adh1167)
Image: Clinical workflow and viral detection using the virusHB-Chip (Photo courtesy of Science Advances, DOI:10.1126/sciadv.adh1167)

The ability to isolate and detect whole viruses from complex biofluids could enhance our understanding of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as other viral infections, spreads within the host, providing valuable insights into their dynamics. Quantifying whole viral particles could inform infectivity and reveal a potential link between viral load and organ damage. Researchers have now found that a method originally created for cancer detection can also identify and track even trace amounts of intact SARS-CoV-2 viral particles in blood and other fluids from patients with acute COVID-19 infections, offering promise for improving future treatment strategies.

In the early days of the pandemic, scientists at Mass General Brigham (Somerville, MA, USA) sought to adapt their cancer vesicle isolation technique to detect SARS-CoV-2 in biofluids like blood, stool, and saliva. They quickly assembled a multidisciplinary team to adapt their technology and expand the potential for detecting intact viruses. Their research, published in Science Advances, demonstrated that this method could detect as few as three viral particles in 1 milliliter of blood. When applied to more than 150 samples (103 plasma, 36 saliva, and 29 stool samples) from COVID-19 patients, the technique accurately measured viral levels over time, with intact viral particles detectable up to 50 days after the initial infection.

“With clinical needs changing, the ability to serially monitor viral load in this manner has great potential for guiding the treatment of patients with long Covid,” said co–senior author Shannon L. Stott, PhD. “This versatile technology could also have widespread applications in viral monitoring for current and future infectious diseases.”

Gold Member
Hematology Analyzer
Swelab Lumi
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Silver Member
CEA Assay
Carcinoembryonic Antigen Assay

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: TriVerity Test is the first and only molecular blood test that can both identify bacterial and viral infections (Photo courtesy of Inflammatix)

30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease

Despite significant investment in innovation and decades of research, sepsis continues to have a high mortality rate and remains the most expensive diagnosis for healthcare systems. Hospital systems bear... Read more

Industry

view channel
Image: The 24th edition of Medlab Middle East will be held from 3-6 February at the Dubai World Trade Centre (Photo courtesy of Informa Markets)

Medlab Middle East Looks to The Future of Laboratories

The medical laboratory market in the Middle East and Africa (MEA) is expected to experience substantial growth, with projections indicating it could reach USD 473.84 million by 2029, growing at a strong... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.