We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

By LabMedica International staff writers
Posted on 18 Apr 2025
Print article
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in forensic investigations and biosensing. Fluorophores have been utilized by scientists to highlight cells and tissues under specialized microscopes, making even the smallest details visible. These molecules also play a crucial role in tracking diseases, studying cellular functions, and assisting in the diagnosis of various health conditions. Now, researchers have developed tiny, clay-based materials known as fluorescent polyionic nanoclays, which can be tailored for numerous applications, including improving medical tests.

These fluorescently labeled nanoclays, created by researchers at the University of Missouri-Columbia (Columbia, MO, USA), exhibit an exceptional brightness of 7,000 brightness units when normalized by volume, marking the highest levels ever recorded for a fluorescent material. This increased brightness makes these materials highly effective for sensitive optical detection methods, leading to stronger analytical signals and improved detection. These enhancements open up new possibilities for advanced sensors and contrast agents in medical imaging. Published in Chemistry of Materials, the study emphasizes the versatility of these nanoclays, which can be adapted to a variety of applications. They have a high degree of functionality, allowing for precise control over the number and type of fluorescent molecules attached to their surfaces. This capability provides a flexible platform where the optical and physicochemical properties of the nanoclays can be finely tuned by selecting and attaching specific molecules.

One of the key features of these nanoclays is their ability to be easily customized, making them suitable for diverse applications in different fields. Initial tests suggest that these materials are safe for medical use, potentially enabling doctors to see inside the body with greater clarity. Although fluorescence remains the primary focus of current research, the team plans to further explore the customization of these nanoclays by incorporating other molecules, such as amino acids, antibodies, DNA aptamers, and ligands for selective metal binding. This opens up opportunities for applications beyond just imaging and sensing. These materials could also play a significant role in drug delivery, improving medical tests, monitoring diseases, and aiding in cancer treatment.

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Coagulation Analyzer
CS-2400

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.