We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




‘Two-Faced’ Gene to Help Identify Individuals at Greater Risk of Developing Esophageal Cancer

By LabMedica International staff writers
Posted on 06 Jan 2025
Print article
Image: The study aimed to understand why some cases of Barrett’s esophagus progress to cancer while others do not (photo courtesy of Shutterstock)
Image: The study aimed to understand why some cases of Barrett’s esophagus progress to cancer while others do not (photo courtesy of Shutterstock)

In England, only 12% of people with esophageal cancer survive for 10 years or more. The UK has one of the highest rates of esophageal adenocarcinoma globally, a subtype of cancer that continues to rise in prevalence. This type of cancer typically develops from a condition called Barrett's esophagus, where the cells lining the esophagus become abnormal. However, only about 1% of individuals with Barrett's esophagus develop cancer each year. Now, a recent unexpected discovery of a genetic mechanism could help doctors better identify which individuals are at a higher risk of developing cancer, potentially leading to more personalized and effective prevention strategies.

The study, conducted by the research team at Queen Mary University of London’s Barts Cancer Institute (London, UK), aimed to understand why some cases of Barrett's esophagus progress to cancer while others do not, in order to improve predictions and treatments for esophageal adenocarcinoma. The team analyzed gene sequencing data from over 1,000 individuals with esophageal adenocarcinoma and more than 350 individuals with Barrett’s esophagus. They discovered that defects in a gene called CDKN2A were more common in individuals with Barrett's esophagus who never progressed to cancer. This was an unexpected finding, as CDKN2A is typically lost in various cancers and is well-known for its role as a tumor suppressor gene, acting as a safeguard against cancer development.

The loss of CDKN2A in normal esophageal cells can promote the development of Barrett's esophagus. However, the researchers found that it also provides protection against the loss of another key gene, p53, which is often referred to as the "guardian of the genome" because of its critical tumor-suppressing role. The loss of p53 strongly drives the progression from Barrett's esophagus to cancer. The team found that potentially cancerous cells that lost both CDKN2A and p53 became weakened, preventing cancer from taking root. Conversely, if cancer cells lose CDKN2A later in the disease, it leads to a more aggressive form of cancer and poorer patient outcomes. This unexpected genetic discovery, published in Nature Cancer, could have important implications for cancer risk assessment. The findings suggest that if a person with Barrett’s esophagus has an early mutation in CDKN2A but no mutations in p53, it may indicate a lower risk of progression to cancer. On the other hand, mutations in CDKN2A later in the disease could signal a poor prognosis. Further research is needed to determine how best to use this new information to benefit patients in clinical settings.

“We often assume that mutations in cancer genes are bad news, but that’s not the whole story. The context is crucial. These results support a paradigm shift in how we think about the effect of mutations in cancer,” said lead researcher, Francesca Ciccarelli, Professor of Cancer Genomics at Queen Mary University of London’s Barts Cancer Institute and Principal Group Leader at the Francis Crick Institute, where the experimental work in this study took place. “It can be tempting to look at cancer mutations as good or bad, black or white. But like the Roman god, Janus, they can have multiple faces – a dual nature. We’re increasingly learning that we all accumulate mutations as an inevitable part of aging. Our findings challenge the simplistic perception that these mutations are ticking time bombs and show that, in some cases, they can even be protective.”

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Washer Disinfector
Tiva 8
New
Chemiluminescence Immunoassay Analyzer
AutoLumo A6200/A6600

Print article

Channels

Hematology

view channel
Image: The study examined the diagnostic utility of ELISA testing for heparin-induced thrombocytopenia (Photo courtesy of 123RF)

Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy

Heparin-induced thrombocytopenia (HIT), a serious side effect of the blood thinner heparin, is difficult to diagnose because thrombocytopenia, or low platelet count, can be caused by a variety of factors... Read more

Microbiology

view channel
Image: Genetic testing can determine which drugs will work for patients with C. auris (Photo courtesy of Shutterstock)

Genetic Testing Could Improve Treatment for Virulent Multidrug-Resistant Fungus Candida Auris

Candida auris (C. auris), a multidrug-resistant yeast responsible for severe, life-threatening infections, was first identified in 2009. Since its discovery, it has spread globally, causing significant... Read more

Pathology

view channel
Image: Researchers have developed new approach for identifying circulating tumor cells in patients with pancreatic and lung cancer (Photo courtesy of Jacob Dwyer/Michigan Medicine)

Biolasers Light Up Circulating Tumor Cells in Bloodstream of Cancer Patients

As tumors grow, they release cells into the bloodstream, known as circulating tumor cells (CTCs). Although these cells are vastly outnumbered by millions of other blood cells, detecting them early can... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.