We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New COVID-19 Test Pinpoints Human Antibodies Specific to Particular Part of SARS-CoV-2 Spike Protein

By LabMedica International staff writers
Posted on 17 Jun 2020
Print article
Image: New COVID-19 Test Pinpoints Human Antibodies Specific to Particular Part of SARS-CoV-2 Spike Protein (Photo courtesy of UNC School of Medicine)
Image: New COVID-19 Test Pinpoints Human Antibodies Specific to Particular Part of SARS-CoV-2 Spike Protein (Photo courtesy of UNC School of Medicine)
Researchers have developed a COVID-19 test that pinpoints human antibodies specific to a particular part of the SARS-CoV-2 spike protein.

Scientists at the University of North Carolina at Chapel Hill School of Medicine (Chapel Hill, NC, USA) developed the new kind of antibody test, a simplified experimental assay that could be ramped up to test thousands of blood samples at labs that do not have the resources of commercial labs and large academic medical centers. The test can be ramped up to document past and recent COVID-19 infections and possibly used to identify asymptomatic virus infection and the level of immunity in individuals.

The researchers created a blood test to pinpoint SARS-CoV-2 antibodies that target one unique piece of the SARS-CoV-2 spike protein. That piece is called a receptor binding domain, or RBD. Their RBD-based antibody test can measure the levels of that domain, which they found correlate to the levels of the all-important neutralizing antibodies that provide immunity. The RBD of the spike protein in SARS-CoV-2 is not shared among other known human or animal coronaviruses. Therefore, antibodies against this domain are likely to be highly specific to SARS-CoV-2, and so these antibodies reveal if an individual has been exposed to the virus that can cause COVID-19. Indeed, when the researchers tested blood collected from people exposed to other coronaviruses, none had antibodies to the RBD of SARS-CoV-2.

“Our assay is extremely specific for antibodies to the virus that causes COVID-19, which is not the case for some currently available antibody tests,” said co-senior author Aravinda de Silva, professor of microbiology and immunology and member of the UNC Institute for Global Health and Infectious Diseases. “Our results strongly support the use of RBD-based antibody assays for population-level surveillance and as a correlate of the neutralizing antibody levels in people who have recovered from SARS-CoV-2 infections.”

“We are now further streamlining our test into an inexpensive assay, so that instead of the test taking four to five hours to complete, our assay could be completed in about 70 minutes without compromising quality,” said first and co-senior author Prem Lakshmanane, PhD, assistant professor of microbiology and immunology at UNC.

Related Links:
Scripps Research
University of North Carolina at Chapel Hill School of Medicine


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.