We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI Takes Guesswork Out Of Lateral Flow Testing

By LabMedica International staff writers
Posted on 19 Oct 2022
Print article
Image: Researchers show that machine learning-based apps could be beneficial for diagnostic testing at home (Photo courtesy of Pexels)
Image: Researchers show that machine learning-based apps could be beneficial for diagnostic testing at home (Photo courtesy of Pexels)

An artificial intelligence (AI) app to read COVID-19 lateral flow tests helped to reduce false results in a new trial.

A team of researchers from the University of Birmingham (Birmingham, UK), Durham University (Durham, UK) and Oxford University (Oxford, UK) tested whether a machine learning algorithm could improve the accuracy of results from antigen lateral flow devices for COVID-19. The LFD AI Consortium team worked at UK Health Security Agency assisted test centres and with health care workers conducting self-testing to trial the AI app. More than 100,000 images were submitted as part of the study, and the team found that the algorithm was able to increase the sensitivity of results, determining between a true positive and false negative, from 92% to 97.6% accuracy.

“The widespread use of antigen lateral flow devices was a significant moment not just during the pandemic, but has also introduced diagnostic testing to many more people in society. One of the drawbacks with LFD testing for COVID, pregnancy and any other future use is the ‘faint line’ question – where we can’t quite tell if it’s a positive or not,” said Professor Andrew Beggs, Professor of Cancer Genetics & Surgery at the University of Birmingham and lead author of the study. “The study looked at the feasibility of using machine learning to take the guesswork out of the faint line tests, and we’re pleased to see that the app saw an increase in sensitivity of the tests, reducing the numbers of false negatives. The promise of this type of technology could be used in lots of applications, both to reduce uncertainty about test results and provide a crucial support for visually impaired people.”

“The increase in sensitivity and overall accuracy is significant and it shows the potential of this app by reducing the number of false negatives and future infections. Crucially, the method can also be easily adapted to the evaluation of other digital readers for lateral flow type devices,” added Professor Camila Caiado, Professor of Statistics at Durham University and chief statistician on the project.

Related Links:
University of Birmingham
Durham University
Oxford University

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.