We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New COVID-19 Test Uses Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2 Virus in 30 Seconds

By LabMedica International staff writers
Posted on 16 Oct 2020
A new COVID-19 rapid test that uses a nanotube-based electrochemical biosensor has shown successful lab results by detecting the SARS-CoV-2 virus in about 30 seconds.

Engineers and virologists at the University of Nevada (Reno, NV, USA) have teamed up to develop a novel COVID-19 testing approach based on a similar technology used in the past for detecting tuberculosis and colorectal cancer as well as detection of biomarkers for food safety. Using their expertise in detecting a specific biomarker in the breath of tuberculosis patients using a metal functionalized nano sensor, the researchers have developed a SARS-CoV-2 test that does not require a blood sample and is run using a nasal swab or even exhaled breath, which has biomarkers of COVID-19. The developed approach also has the potential for diagnosis of other respiratory viral diseases by identifying appropriate metallic elements to functionalize nanotubes.

The researchers first synthesized and prepared the antigenic protein of COVID-19 virus in their laboratory, SARS-CoV-2 receptor binding domain protein, for the preliminary testing and determining the sensitivity of the nano sensor. The team developed co-metal functionalized nanotubes as a sensing material for electrochemical detection of the protein. They confirmed the biosensor’s potential for clinical application by directly analyzing the RBD of the Spike glycoprotein on the sensor. The team now plans to move to the next step of sensor validation on the actual COVID-19 patients swabs stored in the Viral Transport Medium (VTM) and have applied for funding to develop a specific and inexpensive point-of-care sensor for a rapid detection of COVID-19 virus in saliva or breath of infected individuals.

“This is Point of Care testing to assess the exposure to COVID-19. We do not need a laboratory setting or trained health care workers to administer the test. Electrochemical biosensors are advantageous for sensing purposes as they are sensitive, accurate and simple,” said Professor Misra, in the University’s College of Engineering Chemical and Materials Department.

Related Links:
University of Nevada


Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.