We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI Combined with Genomic Surveillance Beats Humans at Detecting Infectious Disease Outbreaks in Hospital Settings

By LabMedica International staff writers
Posted on 23 Nov 2021

By coupling machine learning with whole genome sequencing, scientists have greatly improved the quick detection of infectious disease outbreaks within a hospital setting over traditional methods for tracking outbreaks.

The process developed by scientists at the University of Pittsburgh School of Medicine (Pittsburgh, PA, USA) and Carnegie Mellon University (Pittsburgh, PA, USA) indicates a way for health systems to identify and then stop hospital-based infectious disease outbreaks in their tracks, cutting costs and saving lives. The Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) couples the recent development of affordable genomic sequencing with computer algorithms connected to the vast trove of data in electronic health records. When the sequencing detects that any two or more patients in a hospital have near-identical strains of an infection, machine learning quickly mines those patients’ electronic health records for commonalities – whether that be close proximity of hospital beds, a procedure using the same equipment or a shared health care provider – alerting infection preventionists to investigate and halt further transmission.

Ordinarily, this process requires clinicians to notice that two or more patients have a similar infection and alert their infection prevention team, which can then review patient records to attempt to find how the infection was transmitted. From November 2016 to November 2018, UPMC Presbyterian Hospital ran EDS-HAT with a six-month lag for a few select infectious pathogens often associated with health care-acquired infections nationwide, while continuing with real-time, traditional infection prevention methods. The team then investigated how well EDS-HAT performed. EDS-HAT detected 99 clusters of similar infections in that two-year period and identified at least one potential transmission route in 65.7% of those clusters. During the same period, infection prevention used whole genome sequencing to aid in the investigation of 15 suspected outbreaks, two of which revealed genetically related infections. If EDS-HAT had been running in real-time, the team estimates as many as 63 transmissions of an infectious disease from one patient to another could have been prevented. It also would have saved the hospital as much as USD 692,500.

In one case-study, EDS-HAT found an outbreak of vancomycin-resistant Enterococcus faecium that it traced to an interventional radiology procedure involving injection of sterile contrast that was being performed according to manufacturer instructions. Due to EDS-HAT detecting the outbreak, UPMC alerted the manufacturer to the instructions that led to faulty sterilization practices. UPMC plans to introduce EDS-HAT in real-time at UPMC Presbyterian Hospital and expects this innovation to benefit other infection prevention and control programs in the future. And the original EDS-HAT, which primarily focused on drug-resistant bacterial pathogens, will soon be expanding to incorporate sequencing of respiratory viruses, including COVID-19.

“The current method used by hospitals to find and stop infectious disease transmission among patients is antiquated. These practices haven’t changed significantly in over a century,” said senior author Lee Harrison, M.D., professor of infectious diseases at Pitt’s School of Medicine and epidemiology at Pitt’s Graduate School of Public Health. “Our process detects important outbreaks that would otherwise fly under the radar of traditional infection prevention monitoring.”

Related Links:
University of Pittsburgh School of Medicine 
Carnegie Mellon University 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.