We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Methodology to Detect SARS-CoV-2 That Produces Reliable Results More Quickly Could Be a Game-Changer

By LabMedica International staff writers
Posted on 21 Dec 2021

A new methodology to detect SARS-CoV-2 that can produce reliable results more quickly than other methods could be a game-changer in COVI-19 testing.

Researchers at the Binghamton University (Binghamton, NY, USA) have developed a nucleic acid sensor that has the potential to speed sample turn-around time while maintaining the sensitivity and specificity parameters that make molecular testing powerful.

Methods to detect SARS-CoV-2, the virus that causes COVID-19, come in two types. The first detects the virus protein or “antigen,” the basis of the rapid tests found at local stores, with results typically coming back in around 15 minutes. The second type are molecular tests designed to detect virus nucleic acid, which can take anywhere from one to three days to return results. In the very specific and sensitive molecular tests, specimens must be shipped to testing labs, where the samples are then processed and analyzed by technicians with specialized training. As a result, they’re considered by scientists as the gold standard for testing due to their reliability, although their long wait time makes them cumbersome for patients.

The nucleic acid sensor developed by the researchers is called an E-beacon and may lead to faster, more accurate test for coronavirus. Enzymatic beacons are engineered “bioconjugates” with two key components: a light-generating enzyme and a DNA probe. The components are stitched together via a recently-patented method. In the E-beacons prepared for SARS-CoV-2, the DNA probe recognizes a specific sequence in the virus’ spike gene; that recognition event in turn causes the light output from the attached enzyme to increase. The more virus nucleic acid in a sample, the brighter the light signal from the enzyme component of the E-beacon.

E-beacons can provide positive or negative results more rapidly than molecular tests, and without the expensive instrumentation required by polymerase chain reaction (PCR) based testing. The E-beacon experiments haven’t yet been done outside the lab, which is the likely next step. However, its applications could be a game-changer. For instance, users can access a walk-up, automated testing device that somewhat resembles a vending machine to deposit a testing swab into a collection port. The molecular tests would then run autonomously within the machine, sending out the results via cell phone in about two hours. E-beacons represent an attractive alternative to the current testing methods, and not just for SARS-CoV-2. Because of their modular design, they can be reconfigured easily for detecting other viral or bacterial pathogens.

“We focused on cutting down the wait time for molecular testing. We developed a nucleic acid sensor - we call it an E-beacon - that has the potential to speed sample turn-around time while maintaining the sensitivity and specificity parameters that make molecular testing so powerful,” said Brian Callahan, Binghamton University Associate Professor of Chemistry. “As of now, our E-beacons appear to be just as specific and even more sensitive than detection methods used in current SARS-CoV-2 molecular tests.”

Related Links:
Binghamton University 

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.