Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Non-Invasive COVID-19 Test Identifies `Breath Signatures` to Provide Almost Instant Results

By LabMedica International staff writers
Posted on 29 Oct 2020
Initial findings from a new study have shown how COVID-19 can be detected via a non-invasive breath test by identifying candidate biomarkers, providing almost instant results.

The new study was conducted by Loughborough University (Leicestershire, UK) which is part of a consortium’s research team that has been able to identify candidate biomarkers present in the breath of someone affected by COVID-19. More...
Utilizing technologies which were developed earlier, the team has demonstrated how these markers or ‘breath signatures’ can be used to rapidly distinguish COVID-19 from other respiratory conditions at point of need, such as an emergency department, a workplace or a care setting, with no laboratory support. The IMSPEX Group which is also part of the consortium will be working alongside researchers to help develop and scale such technology. Its BreathSpec device has been a key tool used by researchers in the analysis of volatile organic compounds (VOCs) in human breath.

For the feasibility study, the researchers recruited 98 patients, out of whom 31 had COVID-19. Other diagnoses included asthma, exacerbation of asthma and COPD, viral pneumonia, other respiratory tract infections, and cardiac conditions. In order to identify and diagnose COVID-19 from the samples, the team used Gas Chromatography (GC) - a procedure used for separating and analyzing compounds that can be vaporized without decomposition - and Ion Mobility Spectrometry (IMS) – an analytical technique used to separate and identify ionized molecules in the gas phase. The study participants gave a single breath-sample for the analysis of VOCs by GC-IMS. The analysis identified aldehydes (ethanal, octanal), ketones (acetone, butanone), and methanol that discriminated COVID-19 from other conditions.

“We are hugely encouraged by these findings. Employing tried and tested techniques used during the TOXI-Triage project, suggests that COVID-19 may be rapidly distinguished from other respiratory conditions,” said Paul Thomas, Professor of Analytical Science from Loughborough’s Department of Chemistry. “To develop this technique further larger studies are required, together with complementary GC-MS studies, to build on the data collected so far. If shown to be reliable, it offers the possibility for rapid identification or exclusion of COVID-19 in emergency departments or primary care that will protect healthcare staff, improve the management of patients and reduce the spread of COVID-19.”

Related Links:
Loughborough University


Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The liquid biopsy approach measures randomness in DNA methylation patterns to detect early-stage cancer signals in blood (Photo courtesy of 123RF)

Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability

Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.