Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New CRISPR-Based COVID-19 Test Uses Smartphone Camera to Provide Accurate Results in 30 Minutes

By LabMedica International staff writers
Posted on 07 Dec 2020
Researchers have developed a CRISPR-based test for COVID-19 that can detect the presence of SARS-CoV-2 in a nasal swab using a smartphone camera and provide accurate results in less than 30 minutes.

The novel approach developed by scientists at Gladstone Institutes (San Francisco, CA, USA), University of California, Berkeley (Berkeley, CA, USA), and University of California, San Francisco (UCSF; San Francisco, CA, USA) skips all the conversion and amplification steps, using CRISPR to directly detect the viral RNA. Not only can their new diagnostic test generate a positive or negative result, it also measures the viral load (or the concentration of SARS-CoV-2, the virus that causes COVID-19) in a given sample.

In the new test, the Cas13 protein is combined with a reporter molecule that becomes fluorescent when cut, and then mixed with a patient sample from a nasal swab. The sample is placed in a device that attaches to a smartphone. If the sample contains RNA from SARS-CoV-2, Cas13 will be activated and will cut the reporter molecule, causing the emission of a fluorescent signal. Then, the smartphone camera, essentially converted into a microscope, can detect the fluorescence and report that a swab tested positive for the virus. The researchers also say that their assay could be adapted to a variety of mobile phones, making the technology easily accessible.

When the scientists tested their device using patient samples, they confirmed that it could provide a very fast turnaround time of results for samples with clinically relevant viral loads. In fact, the device accurately detected a set of positive samples in under 5 minutes. For samples with a low viral load, the device required up to 30 minutes to distinguish it from a negative test. Not only does the new CRISPR-based test offer a promising option for rapid testing, but by using a smartphone and avoiding the need for bulky lab equipment, it has the potential to become portable and eventually be made available for point-of-care or even at-home use. And, it could also be expanded to diagnose other respiratory viruses beyond SARS-CoV-2. In addition, the high sensitivity of smartphone cameras, together with their connectivity, GPS, and data-processing capabilities, have made them attractive tools for diagnosing disease in low-resource regions.

"What really makes this test unique is that it uses a one-step reaction to directly test the viral RNA, as opposed to the two-step process in traditional PCR tests," said Melanie Ott, MD, PhD, director of the Gladstone Institute of Virology and one of the leaders of the study. "The simpler chemistry, paired with the smartphone camera, cuts down detection time and doesn't require complex lab equipment. It also allows the test to yield quantitative measurements rather than simply a positive or negative result."

"We chose to use mobile phones as the basis for our detection device since they have intuitive user interfaces and highly sensitive cameras that we can use to detect fluorescence," added UC Berkeley bioengineer Daniel Fletcher, PhD. "Mobile phones are also mass-produced and cost-effective, demonstrating that specialized lab instruments aren't necessary for this assay."

Related Links:
Gladstone Institutes
University of California, Berkeley
University of California, San Francisco



Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.