We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections

By LabMedica International staff writers
Posted on 25 Jan 2021
Print article
Image: New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections (Photo courtesy of Giovanni Cancemi)
Image: New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections (Photo courtesy of Giovanni Cancemi)
A new artificial intelligence (AI) algorithm could help leaders of governments and organizations make better informed decisions on how many symptomatic and asymptomatic individuals to test for COVID-19 with a limited supply of daily tests, and at what stage of the pandemic.

Simulated testing strategies of the AI model developed by researchers at Penn State’s College of Information Sciences and Technology (University Park, PA, USA) resulted in approximately 40% fewer infections. Using an AI model known as Partially Observable Markov Decision Processes, the team developed a sequential policy for distributing tests among a population. Their model, called Design of Optimal COVID-19 Testing Oracle, or DOCTOR, was measured against other existing testing strategies used by governments and institutions. Many of these other strategies are static and non-adaptive, potentially causing significant shortcomings in their effectiveness in containing COVID-19.

In a two-phased approach, DOCTOR first suggests spending more effort in testing symptomatic individuals, allocating approximately 65% of its available testing kits for individuals presenting symptoms. Over time, as the number of symptomatic individuals diminishes due to these patients moving to quarantine or hospital settings, DOCTOR shifts its attention to asymptomatic testing, gradually increasing the number of testing kits allocated to asymptomatic individuals as decision points proceed. When applied in a simulation to the city of Santiago in Panama - a country with the world’s highest rate of COVID-19 infections per capita - the model’s testing strategy outperformed state-of-the-art baselines by achieving approximately 40% fewer COVID-19 infections. This illustrates the benefit of having an adaptive strategy, and even more so with new variants of the virus emerging, according to the researchers. The team’s research shows that the use of an AI-driven testing strategy for COVID-19 would be most beneficial when the pandemic spread is intermediate - meaning it’s not too severe and it’s not too slow. As COVID-19 is currently in an intermediate stage in many places worldwide, it is an optimal time for governments and institutions to consider an AI-driven testing strategy. Additionally, the model could be useful in guiding decision makers in the event of a future pandemic.

“There is a possibility that testing is still going to be a part of our COVID-19 prevention efforts in the next year,” said Amulya Yadav, PNC Technologies Career Development Assistant Professor at the College of IST. “Even if vaccines work on the new variants as well, I think there is going to be a difference or a divide between developed and underdeveloped countries and how quickly they are able to vaccinate their populations. So testing is going to be much more important.”

Related Links:
Penn State

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Refrigerated Microtube Homogenizer
BeadBlaster 24R
New
Ureaplasma Urealyticum Test
Duplicα RealTime Ureaplasma Urealyticum Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.