Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections

By LabMedica International staff writers
Posted on 25 Jan 2021
A new artificial intelligence (AI) algorithm could help leaders of governments and organizations make better informed decisions on how many symptomatic and asymptomatic individuals to test for COVID-19 with a limited supply of daily tests, and at what stage of the pandemic.

Simulated testing strategies of the AI model developed by researchers at Penn State’s College of Information Sciences and Technology (University Park, PA, USA) resulted in approximately 40% fewer infections. Using an AI model known as Partially Observable Markov Decision Processes, the team developed a sequential policy for distributing tests among a population. Their model, called Design of Optimal COVID-19 Testing Oracle, or DOCTOR, was measured against other existing testing strategies used by governments and institutions. Many of these other strategies are static and non-adaptive, potentially causing significant shortcomings in their effectiveness in containing COVID-19.

In a two-phased approach, DOCTOR first suggests spending more effort in testing symptomatic individuals, allocating approximately 65% of its available testing kits for individuals presenting symptoms. Over time, as the number of symptomatic individuals diminishes due to these patients moving to quarantine or hospital settings, DOCTOR shifts its attention to asymptomatic testing, gradually increasing the number of testing kits allocated to asymptomatic individuals as decision points proceed. When applied in a simulation to the city of Santiago in Panama - a country with the world’s highest rate of COVID-19 infections per capita - the model’s testing strategy outperformed state-of-the-art baselines by achieving approximately 40% fewer COVID-19 infections. This illustrates the benefit of having an adaptive strategy, and even more so with new variants of the virus emerging, according to the researchers. The team’s research shows that the use of an AI-driven testing strategy for COVID-19 would be most beneficial when the pandemic spread is intermediate - meaning it’s not too severe and it’s not too slow. As COVID-19 is currently in an intermediate stage in many places worldwide, it is an optimal time for governments and institutions to consider an AI-driven testing strategy. Additionally, the model could be useful in guiding decision makers in the event of a future pandemic.

“There is a possibility that testing is still going to be a part of our COVID-19 prevention efforts in the next year,” said Amulya Yadav, PNC Technologies Career Development Assistant Professor at the College of IST. “Even if vaccines work on the new variants as well, I think there is going to be a difference or a divide between developed and underdeveloped countries and how quickly they are able to vaccinate their populations. So testing is going to be much more important.”

Related Links:
Penn State


Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.