We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI Model for Early Detection of SARS-CoV-2 in Children Could Pave Way for Rapid Bedside COVID-19 Diagnostic Device

By LabMedica International staff writers
Posted on 05 Feb 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) model to aid in the early detection of severe SARS-CoV2 illness in children is expected to improve outcomes via early recognition, timely intervention and appropriate allocation of critical resources, as well as lead to the development of a rapid bedside COVID-19 diagnostic device.

To prevent children from becoming critically ill from SARS-CoV-2, a team of researchers at Wayne State University (Detroit, MI, USA) is working to define and compare the salivary molecular host response in children with varying phenotypes of SARS-CoV-2 infections and develop and validate a sensitive and specific model to predict severe SARS-CoV-2 illness in children. They are working to develop a portable, rapid device that quantifies salivary miRNAs with comparable accuracy to predicate technology (qRT-PCR). The team will develop an AI-assisted cloud and mobile system for early recognition of severe SARS-CoV-2 infection in children.

Currently, there are no methods to discern the spectrum of the disease’s severity and predict which children with SARS-CoV-2 exposure will develop severe illness, including Multisystem Inflammatory Syndrome (MIS-C). Because of this, there is an urgent need to develop a diagnostic modality to distinguish the varying phenotypes of disease and risk stratify disease. The research team aims to develop an innovative and efficient AI model with cloud and edge intelligence-integrating non-invasive biomarkers with social determinants of health and clinical data to aid with early detection of severe SARS-CoV-2 illness in children.

“Our research is critical as we expect to improve outcomes of children with severe SARS-CoV-2 infection via early recognition, timely intervention and appropriate allocation of critical resources,” said Dongxiao Zhu, Ph.D., associate professor of computer science in the College of Engineering, who is leading the study. “The successful completion of the project will also be significant, as it will lead to the development of a rapid bedside diagnostic device and creation of patient profiles based on individual risk factors which we expect to lead to personalized treatments in the future.”


Related Links:
Wayne State University

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
Mumps Virus Test
ReQuest Mumps IgG

Print article

Channels

Molecular Diagnostics

view channel
Image: The DNA sequencing method indentifies the bacterial causes of infections to determine the most effective antibiotics for treatment (Photo courtesy of Shutterstock)

New DNA Test Diagnoses Bacterial Infections Faster and More Accurately

Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more

Pathology

view channel
Image: The Results Manager System (Photo courtesy of QuidelOrtho)

Informatics Solution Elevates Laboratory Efficiency and Patient Care

QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.