We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI Model for Early Detection of SARS-CoV-2 in Children Could Pave Way for Rapid Bedside COVID-19 Diagnostic Device

By LabMedica International staff writers
Posted on 05 Feb 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) model to aid in the early detection of severe SARS-CoV2 illness in children is expected to improve outcomes via early recognition, timely intervention and appropriate allocation of critical resources, as well as lead to the development of a rapid bedside COVID-19 diagnostic device.

To prevent children from becoming critically ill from SARS-CoV-2, a team of researchers at Wayne State University (Detroit, MI, USA) is working to define and compare the salivary molecular host response in children with varying phenotypes of SARS-CoV-2 infections and develop and validate a sensitive and specific model to predict severe SARS-CoV-2 illness in children. They are working to develop a portable, rapid device that quantifies salivary miRNAs with comparable accuracy to predicate technology (qRT-PCR). The team will develop an AI-assisted cloud and mobile system for early recognition of severe SARS-CoV-2 infection in children.

Currently, there are no methods to discern the spectrum of the disease’s severity and predict which children with SARS-CoV-2 exposure will develop severe illness, including Multisystem Inflammatory Syndrome (MIS-C). Because of this, there is an urgent need to develop a diagnostic modality to distinguish the varying phenotypes of disease and risk stratify disease. The research team aims to develop an innovative and efficient AI model with cloud and edge intelligence-integrating non-invasive biomarkers with social determinants of health and clinical data to aid with early detection of severe SARS-CoV-2 illness in children.

“Our research is critical as we expect to improve outcomes of children with severe SARS-CoV-2 infection via early recognition, timely intervention and appropriate allocation of critical resources,” said Dongxiao Zhu, Ph.D., associate professor of computer science in the College of Engineering, who is leading the study. “The successful completion of the project will also be significant, as it will lead to the development of a rapid bedside diagnostic device and creation of patient profiles based on individual risk factors which we expect to lead to personalized treatments in the future.”


Related Links:
Wayne State University

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.