We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





AI Model for Early Detection of SARS-CoV-2 in Children Could Pave Way for Rapid Bedside COVID-19 Diagnostic Device

By LabMedica International staff writers
Posted on 05 Feb 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) model to aid in the early detection of severe SARS-CoV2 illness in children is expected to improve outcomes via early recognition, timely intervention and appropriate allocation of critical resources, as well as lead to the development of a rapid bedside COVID-19 diagnostic device.

To prevent children from becoming critically ill from SARS-CoV-2, a team of researchers at Wayne State University (Detroit, MI, USA) is working to define and compare the salivary molecular host response in children with varying phenotypes of SARS-CoV-2 infections and develop and validate a sensitive and specific model to predict severe SARS-CoV-2 illness in children. They are working to develop a portable, rapid device that quantifies salivary miRNAs with comparable accuracy to predicate technology (qRT-PCR). The team will develop an AI-assisted cloud and mobile system for early recognition of severe SARS-CoV-2 infection in children.

Currently, there are no methods to discern the spectrum of the disease’s severity and predict which children with SARS-CoV-2 exposure will develop severe illness, including Multisystem Inflammatory Syndrome (MIS-C). Because of this, there is an urgent need to develop a diagnostic modality to distinguish the varying phenotypes of disease and risk stratify disease. The research team aims to develop an innovative and efficient AI model with cloud and edge intelligence-integrating non-invasive biomarkers with social determinants of health and clinical data to aid with early detection of severe SARS-CoV-2 illness in children.

“Our research is critical as we expect to improve outcomes of children with severe SARS-CoV-2 infection via early recognition, timely intervention and appropriate allocation of critical resources,” said Dongxiao Zhu, Ph.D., associate professor of computer science in the College of Engineering, who is leading the study. “The successful completion of the project will also be significant, as it will lead to the development of a rapid bedside diagnostic device and creation of patient profiles based on individual risk factors which we expect to lead to personalized treatments in the future.”


Related Links:
Wayne State University

Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
New
Chagas Disease Test
Simple/Stick Chagas/WB
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.