We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Liquid Biopsy Allows Monitoring of COVID-19 Damage to Cells, Tissues, and Organs

By LabMedica International staff writers
Posted on 09 Feb 2021
Print article
Image: Transmission electron microscope image showing SARS-CoV-2, the virus that causes COVID-19. Virus particles are shown emerging from the surface of cells cultured in the laboratory (Photo courtesy of US NIAID, via Wikimedia Commons)
Image: Transmission electron microscope image showing SARS-CoV-2, the virus that causes COVID-19. Virus particles are shown emerging from the surface of cells cultured in the laboratory (Photo courtesy of US NIAID, via Wikimedia Commons)
A recent study presented results that point to the utility of exploiting cell-free DNA as an analyte to monitor the damage caused to cells, tissues, and organs by COVID-19.

While COVID-19 primarily affects the lungs, evidence of systemic disease with multi-organ involvement has emerged. In order to better understand this phenomenon, investigators at Cornell University (Ithaca, NY, USA) and colleagues in the United States and Canada developed a blood test to broadly quantify cell, tissue, and organ specific injury due to COVID-19.

For this study, the investigators employed a liquid biopsy method to conduct genome-wide methylation profiling of cell-free DNA in the blood plasma. They assessed the utility of this test to identify subjects with severe disease in two independent, longitudinal cohorts of hospitalized patients. Cell-free DNA profiling was performed on 104 plasma samples from 33 COVID-19 patients and compared to samples from patients with other viral infections and healthy controls.

The investigators reported finding evidence of injury to the lung and liver and involvement of red blood cell progenitors associated with severe COVID-19. Furthermore, a high concentration of cell-free DNA in the blood was itself a strong prognostic marker for severe COVID-19 cases.

“A lot of what we have learned about the involvement of the virus with different organs is from invasive biopsies, postmortem biopsies,” said senior author Dr. Iwijn De Vlaminck, assistant professor of biomedical engineering at Cornell University. “But a liquid biopsy is potentially very useful as a biological measurement, a way to study what is going on in patients who have different types of symptoms, for example. It could be used to assess disease severity and help stratify patients in the care system. It could also potentially be a surrogate biomarker that you could include in randomized controlled trials of various anti-COVID therapies and anti-virals.”

The cell-free DNA study was published in the January 16, 2021, online edition of the journal Cell Med.

Related Links:
Cornell University

Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.