We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Quantitative Strategy for Pooling COVID-19 Tests Could Detect Outbreaks Early

By LabMedica International staff writers
Posted on 09 Mar 2021
Print article
Illustration
Illustration
Scientists have developed a new model to evaluate the performance of a group testing strategy for the SARS-CoV-2 virus, which involves pooling samples from multiple individuals in order to conduct a single RT-PCR test on the whole group.

The theoretical study by scientists at Université Grenoble Alpes (Grenoble, France) accounts for both dilution effect and the detection limits of the RT-PCR test, in an effort to assess the number of potential false negatives based on pooled sample size, to optimize group size thereby minimizing epidemic risk, and finally to more accurately determine the number of contaminated individuals within a given population.

The principle of group testing is simple mathematically speaking: rather than test one hundred samples (one per individual), they can be pooled into ten groups of ten, with only one test for each group. If the test result for a group is positive, then at least one of the group’s samples contains the infectious agent. Conversely, a negative result should, in principle, indicate that none of the combined samples contains the infectious agent. Sample pooling method can reduce the cost can accelerate screening campaign, yet pooling can result in a false positive result whenever mixing samples involves a too large dilution - namely when the quantity of the virus in the tested sample falls below the test’s level of detection.

To assess the efficiency of screening based on a group testing strategy, the researchers who are members of the MODCOV19 platform have developed a mathematical model that estimates this dilution effect based on sample group size. Their model can quantify the reduction of sensitivity for tests, hence the capacity of tests with larger or smaller groups to detect the presence of a contagious individual. Unlike methods that try to minimize the number of tests needed to establish an individual diagnostic for the contaminated individual or individuals, the model’s central aim is to help optimize a collective screening strategy: how best to optimize group size in order to detect a maximum number of individuals all while limiting the risk of false negatives?

The researchers also present an accurate method for measuring the proportion of individuals infected in the tested population (known as prevalence) which can guide the application of preventive measures against epidemic risk. According to their study, group testing is of particular interest because it can quickly and regularly evaluate the presence of SARS-COV-2 within “closed” communities (such as nursing homes or university residences).

Related Links:
Université Grenoble Alpes

Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.