We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Antigen-Based COVID-19 Rapid Test Format Analyzes 500 Samples per Hour and Detects SARS-CoV-2 Infection in 10 Minutes

By LabMedica International staff writers
Posted on 20 May 2021
Print article
Illustration
Illustration
A new antigen-based detection technique could be used to analyze as many as 500 samples per hour and was able to diagnose a viral infection almost as accurately as PCR tests in a recently completed study.

Researchers at the University of Helsinki (Helsinki, Finland) have developed a new rapid assay principle for viral antigen detection, applying it to diagnosing SARS-CoV-2 infections. The test is based on a phenomenon known as time-resolved Förster resonance energy transfer (TR-FRET), where energy travels between two light-sensitive molecules when they are close enough to each other. TR-FRET makes it possible to measure viral particles or the body’s own proteins by using what are known as ‘mix and read’-type tests on complex biological samples, such as serum or even whole blood. In fact, the researchers have previously applied the procedure in the rapid detection of antibodies.

In practice, the TR-FRET solution of the new SARS-CoV-2 rapid test functions like this: a nasopharyngeal swab taken from the test subject is mixed in a test solution which contains antibodies that recognise the SARS-CoV-2 nucleoprotein or spike protein. The antibodies marked with fluorescent labels bind with SARS-CoV-2 particles, forming molecular assemblies, or complexes, whose existence can be confirmed/detected by using a TR-FRET assay. The results come in roughly 10 minutes later: the formation of any complexes demonstrates, to a high degree of certainty, an infection caused by SARS-CoV-2 in the test subject.

The researchers investigated the functioning of the rapid test using 48 specimens which had been selected on the basis of a positive SARS-CoV2 PCR test, with varying concentrations of viral RNA.

“We demonstrated in our study that a technique based on the TR-FRET phenomenon can be used to diagnose SARS-CoV-2 infections in clinical specimens”, said Jussi Hepojoki, docent of virology and Academy of Finland research fellow at the University of Helsinki. “We demonstrated that the technique we have developed was able to detect almost all positive specimens (37/38), from which we were able to isolate SARS-CoV-2 in cell culture. In other words, the carriers were likely to continue to spread the virus at the time of sample collection.”

In contrast, 10 of the selected group of positive SARS-CoV-2 samples produced a positive result in a PCR test even though virus isolation was no longer possible. None of these samples yielded a positive antigen test result. According to Hepojoki, the PCR tests available are sensitive enough to detect coronavirus even when the sample collection has not been optimal. At the same time, this sensitivity can result in cases of positive PCR test results when the infection itself has been eliminated.

Hepojoki says that another benefit of the new rapid test developed by the researchers is its safety for testers: in practice, the virus becomes inactivated soon after being mixed in the test solution. He says that rapid antigen-based tests could be particularly useful for testing not only travelers, but also people at educational institutions. A TR-FRET reader roughly the size of a desktop computer is needed for the test, making it possible, at least in theory, to carry out testing almost anywhere. In addition to the novel coronavirus, the assay principle can be utilized to detect other respiratory infections or basically any molecule: the only thing needed is an antibody capable of identifying the target molecule.

Related Links:
University of Helsinki

Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Automated Blood Typing System
IH-500 NEXT
New
Auto-Chemistry Analyzer
CS-1200
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.