We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Lateral Flow Test is Cheaper, Easier to Use and as Reliable as PCR Test for Diagnosing SARS-CoV-2 Infection

By LabMedica International staff writers
Posted on 22 Jun 2021
Print article
Image: New Lateral Flow Test is Cheaper, Easier to Use and as Reliable as PCR Test for Diagnosing SARS-CoV-2 Infection (Photo courtesy of Alxddd000/ Shutterstock)
Image: New Lateral Flow Test is Cheaper, Easier to Use and as Reliable as PCR Test for Diagnosing SARS-CoV-2 Infection (Photo courtesy of Alxddd000/ Shutterstock)
A SARS-CoV-2 lateral flow test that combines two bacterial enzymes with genetic sequences and a couple of probes is cheaper and easier to use than PCR tests while producing comparably reliable results.

Called Vigilant and designed at King Abdullah University of Science and Technology (KAUST; Thuwal, Saudi Arabia), the test can detect very small amounts of viral RNA in a sample. PCR tests, which are conducted in laboratories, produce more reliable results but are expensive and require sophisticated equipment and skilled personnel.

The first critical step of the Vigilant platform involves a technique called reverse transcription-recombinase polymerase amplification (RT-RPA) to make many copies of a specific region on the SARS-CoV-2 genome, if it exists in a person’s nose and throat swab sample. PCR tests also amplify viral gene sequences in samples but involve putting the samples through multiple high and low temperature cycles. RT-RPA can be done at room temperature with much cheaper and easy-to-use equipment.

Any SARS-CoV-2 amplified genes in the product of this process are tagged with a molecule called biotin, then added to a test tube containing KAUST’s specially designed detection complex. This complex is formed of two enzymes. On one end, a bacterial enzyme called Cas9 is conjugated with an RNA guide that only recognizes and attaches to the corresponding SARS-CoV-2 gene sequence. On the other end, another bacterial enzyme called VirD2 is attached to a fluorescent-tagged nucleotide sequence.

Drops from the reaction between the complex and RT-RPA product are then added to a lateral flow test strip impregnated with a biotin-recognizing protein called streptavidin on one end and a fluorescent probe-recognizing antibody on the other. If the sample contains SARS-CoV-2 gene sequences, they will have bound to the VirD2-Cas9 complex. A positive result occurs when two visible lines appear. The first line is where biotin on the SARS-CoV-2 amplicon binds to streptavidin. The second line is where the fluorescent tag on the other end of the complex attaches to the strip’s antibody. A negative result shows only as a single line caused by the fluorescent tag binding to the antibody.

“Several types of lateral flow tests are currently available or under research for detecting SARS-CoV-2,” said KAUST Ph.D. student Tin Marsic. “Depending on how they work, they all have disadvantages, including detecting the virus only several days after infection or producing false positive and false negative results. Vigilant can be conducted in non-laboratory settings and is significantly cheaper and easier to use than PCR tests.”

“We’re now working on making our Vigilant platform more user-friendly by coupling it with an even simpler amplification technique,” added KAUST bioengineer Magdy Mahfouz, who led the research. “We are also working on producing other efficient and rapid diagnostic tests that can detect nucleic acids to enable point-of-care testing for pathogens, including viruses and disease markers.”

Related Links:
KAUST

Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.