We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Artificial Intelligence (AI) Model Identifies COVID-19 Patients Using Blood Tests and Chest X-Rays

By LabMedica International staff writers
Posted on 19 Jul 2021
Print article
Image: Artificial Intelligence (AI) Model Identifies COVID-19 Patients Using Blood Tests and Chest X-Rays (Photo courtesy of Nature)
Image: Artificial Intelligence (AI) Model Identifies COVID-19 Patients Using Blood Tests and Chest X-Rays (Photo courtesy of Nature)
Researchers have developed a machine learning (ML) application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph.

The ML model developed by researchers at The University of Hong Kong (Hong Kong) was able to achieve high accuracy for the prediction of SARS-CoV-2 infection in a validation study. The adjunctive use of chest radiograph could play a role in increasing sensitivity while achieving moderate specificity when combined with ML blood model, which may have potential implications in triaging patients, particularly when RT-PCR testing resources are scarce.

The objective of this study was to apply ML for the task of COVID-19 detection using basic laboratory markers and explore the adjunctive role of chest radiographs. The researchers initially performed a statistical comparison of blood tests in patients with different aetiologies of pneumonia, including COVID-19 involving 5,148 patients in 24 hospitals in Hong Kong during the first and second waves of infection. This was done to establish a baseline laboratory comparison between COVID-19 from other pneumonia and other diagnoses. The researchers then trained and validated ML models using basic blood tests with comparison to reference RT-PCR testing to predict COVID-19 infection status, and explore different use case scenarios with adjunction of chest radiographs. The models were then validated with temporal validation sets across other waves of infection in Hong Kong.

For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9-95.8%; Sensitivity: 55.5-77.8%; Specificity: 91.5-98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. The study showed that ML model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.

Related Links:
The University of Hong Kong

Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.