We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Faster COVID-19 Test Avoids RNA Degradation and Time-Consuming Extraction

By LabMedica International staff writers
Posted on 17 Aug 2021
Print article
Image: New Faster COVID-19 Test Avoids RNA Degradation and Time-Consuming Extraction (Photo courtesy of Dustin Hays, National Eye Institute)
Image: New Faster COVID-19 Test Avoids RNA Degradation and Time-Consuming Extraction (Photo courtesy of Dustin Hays, National Eye Institute)
Scientists have developed a new sample preparation method to detect SARS-CoV-2 that bypasses extraction of the virus' genetic RNA material, thereby simplifying sample purification and potentially reducing test time and cost.

The team of scientists at the National Institutes of Health (NIH Bethesda, MA, USA) made their discovery by testing a variety of chemicals using synthetic and human samples to identify those that could preserve the RNA in samples with minimal degradation while allowing direct detection of the virus by using quantitative reverse transcription PCR (RT-qPCR).

Diagnostic testing remains a crucial tool in the fight against the COVID-19 pandemic. Standard tests for detection of SARS-CoV-2 involve amplifying viral RNA to detectable levels using RT-qPCR. But first, the RNA must be extracted from the sample. Manufacturers of RNA extraction kits have had difficulty keeping up with demand during the COVID-19 pandemic, hindering testing capacity worldwide. With new virus variants emerging, the need for better, faster tests is greater than ever. The team used a chelating agent made by Bio-Rad Laboratories called Chelex 100 resin to preserve SARS-CoV-2 RNA in samples for detection by RT-qPCR.

To validate the test, the team collected patient samples and stored them in either viral transport media, or the newly developed chelating-resin-buffer at the NIH Symptomatic Testing Facility. The samples in viral transport media were tested by the COVID-19 testing team using conventional RNA extraction and RT-qPCR testing. The samples in the chelating-resin-buffer were heated and the viral RNA was, then, tested by RT-qPCR. The new preparation significantly increased the RNA yield available for testing, compared to the standard method.

“We used nasopharyngeal and saliva samples with various virion concentrations to evaluate whether they could be used for direct RNA detection,” said Bin Guan, Ph.D., a fellow at the Ophthalmic Genomics Laboratory at NEI. “The answer was yes, with markedly high sensitivity. Also, this preparation inactivated the virus, making it safer for lab personnel to handle positive samples.”

“We think this novel methodology has clear benefits of increasing sensitivity, cost and time savings for testing,” said Robert B. Hufnagel, M.D., Ph.D., chief of the NEI Medical Genetics and Ophthalmic Genomic Unit, “The method stabilizes the RNA at room temperature for easier transport, storage, and handling in clinical settings.”

Related Links:
National Institutes of Health (NIH)

Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test
Automated Blood Typing System
IH-500 NEXT
New
Histamine ELISA
Histamine ELISA
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.