We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Noninvasive and Reagent-Free Technique Uses Raman Spectroscopy and Machine Learning for Detection of COVID-19

By LabMedica International staff writers
Posted on 10 Feb 2022
Print article
Image: Machine-learning model (Photo courtesy of Ember et al., doi 10.1117/1.JBO.27.2.025002)
Image: Machine-learning model (Photo courtesy of Ember et al., doi 10.1117/1.JBO.27.2.025002)

Researchers have developed a new and improved method that uses Raman spectroscopy and machine learning for the detection of SARS-CoV-2.

The noninvasive and reagent-free technique for the efficient detection of COVID-19 has been developed by biomedical researchers at Polytechnique Montréal (Montreal, Canada). Reverse transcription polymerase chain reaction (RT-PCR) techniques are currently the gold standard for detecting SARS-COV-2, the virus that causes COVID-19, although they have certain limitations. RT-PCR involves the transportation of samples to a clinical laboratory for testing, which poses logistical difficulties. It also requires the use of reagents, which could be in short supply and may be less effective when the virus mutates. Moreover, RT-PCR tests can be time-consuming and less sensitive in asymptomatic individuals, rendering them unfeasible for widespread rapid screening. Hence, researchers are trying to devise novel methods for better detection of COVID-19 infections in point-of-care settings, without the need to send away samples for testing.

The new reagent-free detection technique that is based on machine learning and laser-based Raman spectroscopy uses saliva samples. Unlike nasopharyngeal swabs, saliva sampling is safer and noninvasive. Raman spectroscopy is routinely used by researchers to determine the molecular composition of samples. Put simply, molecules scatter incident photons (particles of light) in a unique manner that is dependent on underlying chemical structures and bonding. Researchers can sense and identify molecules based on their characteristic Raman "fingerprint" or spectrum, which is obtained by shining light at samples and measuring the scattered light.

COVID-19 can cause chemical changes in the composition of saliva. Based on this knowledge, the research team analyzed 33 COVID-19-positive samples clinically matched with a subset of a total 513 COVID-19-negative saliva samples. The Raman spectra they obtained were then trained on multiple-instance learning models, instead of conventional ones. The results from this method indicate an accuracy of about 80%, and the researchers found that taking sex at birth into consideration was important in achieving this accuracy. Although saliva composition is affected by time of day as well as the age of the test subject and other underlying health conditions, this technique can still prove to be a great candidate for real-world COVID-19 detection. These findings can facilitate better COVID-19 detection in addition to paving the way for new tools for other infectious diseases.

"Our label-free approach overcomes many limitations of RT-PCR testing. We are working to commercialize this as a faster, robust, and low-cost system, with potentially higher accuracy," said Katherine Ember, a postdoctoral researcher at Polytechnique Montréal, Canada, and first author of the study. "This could be easily integrated with current viral detection workflows, adapted to new viruses and bacterial infections, as well as accounting for confounding variables through new machine learning approaches. In parallel, we are working on reducing the testing time further by using nanostructured metallic surfaces for containing the saliva sample."

Related Links:
Polytechnique Montréal 

Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Coagulation Analyzer
CS-2400

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.