We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





30-Second Coronavirus Test Returns Results as Accurately and Sensitively as PCR Test

By LabMedica International staff writers
Posted on 08 Apr 2022
Print article
Image: The motherboard of a new COVID-19 rapid testing device (Photo courtesy of University of Florida)
Image: The motherboard of a new COVID-19 rapid testing device (Photo courtesy of University of Florida)

With any highly infectious disease, time can be a killer. It is crucial to get a test result for a pathogen quickly, lest someone continue in their daily lives infecting others. And delays in testing have undoubtedly exacerbated the COVID-19 pandemic. Unfortunately, the most accurate COVID-19 test often takes 24 hours or longer to return results from a lab. At-home test kits offer results in minutes but are far less accurate or sensitive. Researchers have now developed a COVID-19 testing device that can detect coronavirus infection in as little as 30 seconds as sensitively and accurately as a PCR, or polymerase chain reaction test, the gold standard of testing.

Researchers at the University of Florida (Gainesville, FL, USA) in association with scientists at National Yang Ming Chiao Tung University (Taipei, Taiwan) have developed the device that could transform public health officials’ ability to quickly detect and respond to the coronavirus - or the next pandemic. Like PCR tests, the device is 90% accurate with the same sensitivity, according to a recent peer-reviewed study.

The hand-held apparatus is powered by a 9-volt battery and uses an inexpensive test strip, similar to those used in blood glucose meters, with coronavirus antibodies attached to a gold-plated film at its tip. The strip is placed on the tongue to collect a tiny saliva sample. The strip is then inserted into a reader connected to a circuit board with the brains of the device. If someone is infected, the coronavirus in the saliva binds with the antibodies and begins a dance of sorts as they are prodded by two electrical pulses processed by a special transistor. A higher concentration of coronavirus changes the electrical conductance of the sample. That, in turn, alters the voltage of the electrical pulses.

The voltage signal is amplified a million times and converted to a numerical value - in a sense, the sample’s electrochemical fingerprint. That value will indicate a positive or negative result, and the lower the value, the higher the viral load. The device’s ability to quantify viral and antibody load makes it especially useful for clinical purposes, according to the researchers. The product can be constructed for less than USD 50 in contrast to PCR test equipment which can cost thousands.

Several institutions have worked on devices using a field effect transistor, or FET, like that found in the COVID-19 testing device which the researchers are developing. But those devices are basically one-offs - a sample is applied directly to the FET, which means the transistor is not reusable and must be discarded. That makes those devices expensive and impractical for mass testing. Then the researchers hit upon on the idea of separating the transistor from the sample, like blood glucose meters that use test strips to collect a drop of blood after a lancet pierces a finger. This innovation makes the device unique, affordable and easy to use. The device could be used for venues with large crowds, such as concerts, sporting events, classrooms, in addition to medical settings. The unit would also provide access to accurate, inexpensive testing in rural areas or in developing nations and offers limitless options for personal uses.

The device is not yet approved by the U.S. Food and Drug Administration. First, the researchers will have to ensure that test results are not thrown off by cross-contamination with other pathogens that might be found in the mouth and saliva. These include other coronaviruses, staph infections, the flu, pneumonia and 20 others. The research team is also studying its ability to detect specific proteins that could be used to diagnose other illnesses, including cancer, a heart attack and immune health.

“There is nothing available like it,” said Josephine Esquivel-Upshaw, D.M.D., a professor in the UF College of Dentistry’s department of restorative dental sciences and member of the research team that developed the device. “It’s true point of care. It’s access to care. We think it will revolutionize diagnostics.”

Related Links:
University of Florida
National Yang Ming Chiao Tung University 

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.