We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App





Blood Abnormalities Found in People with Long Covid

By LabMedica International staff writers
Posted on 22 Aug 2022
Print article
Image: The Attune NxT Flow Cytometer is ideal for immunophenotyping and signaling studies, cell cycle analysis, detection of rare events, stem cell analysis, cancer and apoptosis studies, microbiological assays and more (Photo courtesy of Thermo Fisher Scientific).
Image: The Attune NxT Flow Cytometer is ideal for immunophenotyping and signaling studies, cell cycle analysis, detection of rare events, stem cell analysis, cancer and apoptosis studies, microbiological assays and more (Photo courtesy of Thermo Fisher Scientific).

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID.

The Long Covid patients, most of them struggling with intense fatigue, brain fog, and other symptoms, had low levels of cortisol, a stress hormone that helps the body control inflammation, glucose, sleep cycles. Long Covid shares certain features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), another condition thought to follow an infection.

A large group of Imunobiologists at the Yale School of Medicine (New Haven, CT, USA) and their colleagues included 215 individuals in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. The Healthy Controls (HC), Convalescent Controls (CC) and Long COVID (LC) groups had samples collected within the Mount Sinai Healthcare System (New York, NY, USA). The Healthcare Workers (HCW) group had samples collected within the Yale New Haven Healthcare System.

Whole blood was collected in sodium-heparin-coated vacutainers from participants at Mount Sinai Hospital. The following methods were implemented: Flow cytometry, prepared for analysis on an Attune NXT (Thermo Fisher Scientific, Waltham, MA, USA); SARS-CoV-2 antibody testing by ELISA plates were read at an excitation/emission wavelength of 450 nm and 570 nm; Multiplex proteomic analysis; Linear Peptide Profiling (Serimmune) and samples were normalized to a final concentration of 4 nM for each pool and run on the NextSeq500 (Illumina, San Diego, CA, USA); Protein-based Immunome Wide Association Study (PIWAS) analysis; IMUNE-based motif discovery; and Rapid Extracellular Antigen Profiling (REAP) and analysis.

The scientists reported that marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. The Long Covid blood samples were also awash with a category of “exhausted” T cells that can be recognized by certain markers they express. Such cells surge in the ongoing presence of pathogens, suggesting the bodies of people with Long Covid are actively fighting something.

The authors concluded that significant biological differences have been identified between participants with Long COVID and demographically and medically matched convalescent and healthy control groups, validating the extensive reports of persistent symptoms by various Long COVID advocacy groups. Unbiased machine learning models further identified both putative biomarkers of Long COVID, as well as potential mediators of Long COVID disease pathogenesis. The study was published on August 10, 2022 in the journal medRxiv.

Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
New
Lysing Machine
FastPrep-24 5G
New
hCG Urine Test
QuickVue hCG Urine Test

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.