We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





World’s First AI-Powered Diagnostic Test Accurately Identifies Respiratory Viruses in Five Minutes

By LabMedica International staff writers
Posted on 09 Feb 2023
Print article
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)
Image: The new AI virus diagnostic test could replace current testing methods (Photo courtesy of University of Oxford)

Current testing methods for respiratory viruses – such as a lateral flow test for COVID-19 – are limited to testing for just one infection or are either lab-based and time-consuming or fast and less accurate. Now, a world-first diagnostic test powered by artificial intelligence (AI) that can identify known respiratory viruses within five minutes from just one nasal or throat swab could replace the current testing methods.

The ground-breaking virus detection and identification methodology has been described in a paper published in ACS Nano by researchers at University of Oxford (Oxford, UK). The paper demonstrates how machine learning can significantly improve the efficiency, accuracy and time required to identify different types of viruses, as well as differentiate between the strains. The technology combines molecular labeling, computer vision and machine learning to create a universal diagnostic imaging platform that looks directly at a patient sample and identifies which pathogen is present within seconds – similar to facial recognition software, but for germs.

In preliminary studies, the researchers have shown that the test can identify the COVID-19 virus in patient samples and further research determined that the test could be used for diagnosing multiple respiratory infections. In a study to validate the new method that uses AI software to identify viruses, the researchers began by labeling viruses with single-stranded DNA in more than 200 clinical samples. The images of labeled samples were captured using a commercial fluorescence microscope and processed by custom machine-learning software that is trained to recognize specific viruses by analyzing their fluorescence labels, which show up differently for each virus due to their varying surface size, shape and chemistry. The study showed that the technology is capable of rapidly identifying different types and strains of respiratory viruses, including flu and COVID-19, within five minutes and with an accuracy of >97%.

“Our simplified method of diagnostic testing is quicker and more cost-effective, accurate and future proof than any other tests currently available,” said Dr. Nicole Robb from the University of Warwick and Visiting Lecturer at Oxford’s Department of Physics. “If we want to detect a new virus, all we need to do is retrain the software to recognize it, rather than develop a whole new test. Our findings demonstrate the potential for this method to revolutionize viral diagnostics and our ability to control the spread of respiratory illnesses.”

Related Links:
University of Oxford

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.