We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Next-Generation DNA Sequencing Refines Pneumonia Diagnosis

By LabMedica International staff writers
Posted on 07 Oct 2014
Print article
Applying advanced next-generation sequencing (NGS) of DNA from samples taken from intubated patients with suspected pneumonia has the potential for providing physicians with rapid, precise, culture-independent identification of bacterial, fungal, and viral pathogens and their antimicrobial sensitivity profiles.

Accurate and rapid identification of the microbial pathogens in patients with pulmonary infections could lead to targeted antimicrobial therapy with potentially less adverse effects and lower costs. Toward this end, investigators at George Washington University (Washington DC, USA) combined an NGS approach with data interpretation based on the "PathoScope" bioinformatics software package to analyze bronchial aspirates from 61 intubated patients with suspected pneumonia.

Pathoscope capitalizes on a Bayesian statistical framework that accommodates information on sequence and mapping quality and provides probabilities of matches to a known database of reference genomes. This approach incorporates the possibility that multiple species can be present in the sample or that the target strain is not even contained within the reference database. It also accurately discriminates between very closely related strains of the same species with much less than one time coverage of the genome and without the need for sequence assembly or complex preprocessing of the database or taxonomy. No other method so far described in the literature has been shown to identify species or substrains in such a direct and automatic manner and without the need for large numbers of reads.

The present study used NGS of essentially full-length PCR-amplified 16S ribosomal DNA from the bronchial aspirates. The results from the 61 patients demonstrated that sufficient DNA could be obtained from 72% of samples, 44% of which (27 samples) yielded PCR amplimers suitable for NGS. Out of 27 sequenced samples, only 20 had bacterial culture growth, while microbiological and NGS identification of bacteria coincided in 17 (85%) of these samples. Despite the lack of bacterial growth in seven samples that yielded amplimers and were sequenced, the NGS identified a number of bacterial species in these samples.

Overall, a significant diversity of bacterial species was identified from the same genus as the predominant cultured pathogens. The number of NGS-identifiable bacterial genera was consistently higher than identified by standard microbiological methods.

“Currently, patients who develop pneumonia after entering the ICU are subjected to broad-spectrum antibiotics, which adds costs, potentially increases the risk of development of antimicrobial resistance, and creates a greater likelihood of an adverse effect attributable to the antibiotics,” said senior author Dr. Gary Simon, professor of medicine at George Washington University. “In our paper, we show these methods could improve if we establish a more precise microbiologic cause.”

The study was published in the August 20, 2014, online edition of the Journal of Clinical Microbiology.

Related Links:

George Washington University


New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Troponin T QC
Troponin T Quality Control
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
Urine Drug Test
Instant-view Propoxyphene Urine Drug Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.