We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples

By LabMedica International staff writers
Posted on 25 Feb 2025
Print article
Image: The paper-based device generates high-quality samples of dried plasma, enabling accurate measurements of HIV viral load (Photo courtesy of Charlie Mace/Tufts)
Image: The paper-based device generates high-quality samples of dried plasma, enabling accurate measurements of HIV viral load (Photo courtesy of Charlie Mace/Tufts)

In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices that absorb and preserve the sample for analysis in distant laboratories. While these devices have been beneficial for monitoring medication adherence and tracking disease progression, many of the most commonly used options do not regulate the amount of blood they collect, which can lead to inaccurate results regarding a patient’s infection. Recognizing this limitation, researchers have developed a new paper-based device with wax-printed patterns that form precise channels and collection spots, ensuring a consistent volume of blood is collected every time.

A team from Tufts University School of Medicine (Medford, MA, USA) collaborated with the National Institute for Communicable Diseases (NICD, Johannesburg, South Africa) to carry out a clinical pilot involving 75 HIV-positive patients in South Africa. The NICD provided valuable real-world data, enabling Tufts researchers to compare their plasma spot cards in a clinical environment where they would be actively used. The plasma spot card developed by Tufts' research team demonstrated a more accurate measurement of a patient’s HIV infection than the widely used Roche plasma spot card (90.5% vs. 82.7%).

Published in the Proceedings of the National Academy of Sciences, the study also found that the Tufts device was better at detecting drug-resistant viral mutations (63% vs. 42%), which can inform physicians about whether to continue or change a patient's medication regimen. The researchers are now working to expand the use of this technology by forming partnerships with laboratories and researchers both in the U.S. and internationally. They are also refining the device to improve its accuracy and functionality while progressing toward its commercialization.

“We intentionally focus on developing technologies that are simple, both in construction and operation,” said Charlie Mace, an associate professor at Tufts University’s Department. “Those kinds of restrictions can make research more difficult, but ultimately we believe in that approach, because simplicity should lead to accessibility and affordability, which are both clearly needed in health care.”

Related Links:
Tufts University School of Medicine
NICD

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.