We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Multiplex Diagnostics System Enables Rapid Detection of Multiple Pathogens

By LabMedica International staff writers
Posted on 04 Dec 2024
Print article
Image: The automated multiplex diagnostics system developed by HKBU Professor Terence Lau detects 42 respiratory pathogens in less than 1.5 hours (Photo courtesy of HKBU)
Image: The automated multiplex diagnostics system developed by HKBU Professor Terence Lau detects 42 respiratory pathogens in less than 1.5 hours (Photo courtesy of HKBU)

Each year, the World Health Organization (WHO) releases its Compendium of Innovative Health Technologies for Low-resource Settings, which highlights commercially available solutions and prototypes designed to tackle the challenges faced by low- and middle-income countries in accessing effective, safe, and affordable health technologies. These technologies are crucial in addressing infectious diseases and the growing burden of non-communicable diseases such as cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes. The WHO’s 2024 Compendium has recommended a novel automated multiplex diagnostics system as an innovative technology with significant potential to support health systems in these regions.

Developed at Hong Kong Baptist University (HKBU, Kowloon Tong, Hong Kong), the Automated Multiplex Diagnostics System recommended by the WHO’s 2024 Compendium offers a fully automated solution for conventional laboratory-based PCR (polymerase chain reaction) processes. The system consists of three integrated components: an analytical machine, a microfluidic reagent cartridge, and software. Its unique design enables the detection of 42 respiratory pathogens—28 viruses, 11 bacteria, and 3 fungi—in less than 1.5 hours, without requiring a resource-heavy laboratory, specialized equipment, or highly trained technicians, while ensuring high sensitivity and specificity.

In addition to its impressive performance, the system also offers several advantages in terms of cost-effectiveness, reduced turnaround time, and the ability to analyze multiple targets simultaneously. The system, created by a research team led by Professor Terence Lau from HKBU, is featured as one of 21 highlighted health technologies in the WHO’s 2024 Compendium under the prototype category. The concept for a fully automated, rapid, accurate, and affordable multiplex pathogen detection device was conceived in 2015, and its capabilities were expanded to support the detection of 40 targets, including SARS-CoV-2, in response to the urgent demand for decentralized diagnostics during the COVID-19 pandemic in 2020.

"The System can identify infectious diseases and even non-communicable diseases, and is suitable for other non-medical applications," said Professor Lau. "With this System, we will be able to provide a comprehensive solution that can eventually promote equitable access and decentralized testing for an effective and high-quality healthcare system which WHO emphasizes."

Related Links:
HKBU 

New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
CMV QC
Inactivated Cytomegalovirus High Control
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.