We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

By LabMedica International staff writers
Posted on 31 Mar 2025
Print article
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization (FISH) technique facilitates the swift detection and identification of microbes by leveraging differences in their genomic sequences, without the need for time-consuming culturing or sequencing. However, the growing volume of microbial genomic data has made it increasingly difficult to design appropriate probes for microbial mixtures. Now, a new set of peptide nucleic acid (PNA)-based FISH probes has been developed, offering optimal target specificity by analyzing variations in the 16S ribosomal RNA sequence across bacterial species. Due to their superior ability to penetrate bacteria and higher sensitivity to mismatches, these PNA probes successfully identified seven bacterial species commonly associated with bacteremia with an accuracy ranging from 96% to 99.9% using the optimized FISH technique. Detection is enhanced by Förster resonance energy transfer (FRET) between adjacent binding PNA probes, which prevents cross-reactivity between species. This approach allows for rapid, sequential identification of bacterial species, utilizing chemically cleavable fluorophores, without sacrificing accuracy. Thanks to their exceptional accuracy and speed, these techniques hold significant promise for clinical applications.

A team of researchers from UNIST (Ulsan, Republic of Korea) has developed a diagnostic method capable of identifying infectious pathogens with nearly 100% accuracy in under three hours. This method is far faster and more accurate than traditional bacterial culture and polymerase chain reaction (PCR) analysis, offering potential to reduce mortality rates in critical conditions such as sepsis, where the prompt administration of antibiotics is essential. In their study, published in Biosensors and Bioelectronics, the researchers introduced a new diagnostic approach that uses PNA-based probes to detect pathogens. The FISH technique works by detecting fluorescent signals generated when the probe molecules bind to specific bacterial genetic sequences. This innovative method utilizes two PNA molecules at once, with the researchers designing PNA sequences that specifically target the ribosomal RNA of particular bacterial species by analyzing the genomic sequences of 20,000 species.

PNA exhibits greater sensitivity to sequence mismatches compared to conventional DNA-based probes, and it has superior penetration through bacterial cell walls. Furthermore, the requirement for both PNA molecules to bind to their target site before generating a signal significantly reduces the risk of crosstalk, thereby enhancing accuracy when multiple bacterial strains overlap. In tests, the technology successfully detected seven bacterial species—including E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus—with over 99% accuracy for all species except Staphylococcus aureus, which was detected with an accuracy of 96.3%. The method’s effectiveness was also validated in mixed bacterial samples, where Enterococcus and E. coli were identified with over 99% accuracy when tested together. The research team plans further experiments using blood samples from actual patients to explore the clinical applications of this method.

“This method will aid in the diagnosis of infections requiring immediate antibiotic treatment, such as sepsis, urinary tract infections, and pneumonia, while also helping to reduce unnecessary antibiotic usage,” said Professor Hajun Kim from the Department of Biomedical Engineering at UNIST.

Related Links:
UNIST

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.