We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Binding-Activated Fluorescent Biosensors Open Vast Possibilities for Medical Diagnostics

By LabMedica International staff writers
Posted on 09 Sep 2024
Print article
Image: Molecular biosensors that only light up upon binding their targets open vast possibilities for medical diagnostics (Photo courtesy of Wyss Institute at Harvard University)
Image: Molecular biosensors that only light up upon binding their targets open vast possibilities for medical diagnostics (Photo courtesy of Wyss Institute at Harvard University)

Biosensors are devices that utilize biological molecules to detect specific substances, holding significant potential for identifying disease biomarkers, monitoring biological processes, or detecting environmental toxins. Among these, fluorescent biosensors are common; they involve a biomolecule that binds to a target attached to a probe molecule emitting fluorescent light. Traditional fluorescent biosensors often suffer from low contrast because their probes are always “on,”, requiring unbound biosensor molecules to be washed away for accurate signal detection. A significant advancement in this field is the development of high-contrast “binding-activated fluorescent biosensors” or nanosensors, which light up only upon binding to their specific targets. However, designing nanosensors that combine effective target-binding with an activated fluorescence switch within a compact molecular structure suitable for diverse samples and scalable, cost-effective production poses significant challenges.

Addressing these challenges, a collaborative research effort involving scientists from the Wyss Institute at Harvard University (Boston, MA, USA) has resulted in the development of a synthetic biology platform that simplifies the discovery, molecular evolution, and economical production of small, highly efficient nanosensors. These nanosensors can detect specific proteins, peptides, and small molecules, enhancing their fluorescence by up to 100 times in less than a second upon binding. Central to the platform is the use of novel fluorogenic amino acids (FgAAs) that are integrated into small protein sequences (binders) through an innovative method that allows for the in vitro expansion of the genetic code. This process facilitates high-throughput screening, validation, and directed evolution of protein binders into high-contrast nanosensors, accelerating development across various fields including basic research, environmental science, medical diagnostics, and enhanced therapeutics. The findings of the research have been published in Nature Communications.

“We have long worked on expanding the genetic code of cells to endow them with new capabilities to enable research, biotechnology, and medicine in different areas, and this study is a highly promising extension of this endeavor in vitro,” said Wyss Core Faculty member George Church, Ph.D., who led the study. “This novel synthetic biology platform solves many of the obstacles that stood in the way of upgrading proteins with new chemistries, as exemplified by more capable instant biosensors, and is poised to impact many biomedical areas.”

“This is an important step forward in our capabilities to quickly design low-cost fluorescent biosensors for real-time disease monitoring and with huge potential for diagnostics and precision medicine,” added co-corresponding author Marc Vendrell, Ph.D., a Professor at the University of Edinburgh.

Related Links:
Wyss Institute at Harvard University

Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Whole Blood-Based Controls
Lyphochek Hemoglobin A1C Linearity Set
New
Chemiluminescence Immunoassay Analyzer
Shine i3000

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.