We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Noninvasive Technology Detects Rare Cancer Cells in Blood

By LabMedica International staff writers
Posted on 10 Jun 2024
Print article
Image: DiFC detects cancer cells expressing fluorescent proteins when cells are excited by laser light as they move through a blood vessel (Photo courtesy of Williams et al., doi 10.1117/1.JBO.29.6.065003)
Image: DiFC detects cancer cells expressing fluorescent proteins when cells are excited by laser light as they move through a blood vessel (Photo courtesy of Williams et al., doi 10.1117/1.JBO.29.6.065003)

Historically, analyzing circulating tumor cells (CTCs) required invasive methods like blood draws, which often missed rare CTCs or multicellular CTC clusters (CTCCs) known for their high metastatic potential. Now, a groundbreaking technology offers a new way for researchers to monitor and understand the spread of cancer within the body.

A collaborative effort between researchers at Northeastern University (Boston, MA, USA) and Dartmouth College (Hanover, NH, USA) has led to the development of an innovative device known as "diffuse in vivo flow cytometry" (DiFC). This technology facilitates the noninvasive detection and counting of rare cancer cells circulating in the bloodstream. By utilizing highly scattered light to probe large blood vessels, DiFC overcomes the shortcomings of traditional tests to enable the noninvasive analysis of larger peripheral blood volumes and detection of rare cancer cells. The team’s pioneering two-color DiFC system can simultaneously identify two distinct populations of cancer cell in real time within small animals, paving the way for deeper insights into cancer evolution and treatment responses by studying various cancer cell subpopulations in the same subject.

The versatility of this two-color DiFC system was demonstrated through experiments on tissue-mimicking flow phantoms and mice afflicted with multiple myeloma. By effectively distinguishing cancer cells marked by green fluorescent protein (GFP) and tdTomato, it was possible to observe the dynamics of cancer spread in real time. Notably, most detected CTCCs exhibited single fluorescent proteins, shedding light on the heterogeneity of cancer cell populations. The implications of this technology are significant as it offers the potential to simultaneously track various subpopulations of cancer cells, providing critical insights into tumor growth and therapeutic responses. This paves the way for more refined and individualized treatment options, moving closer to effectively managing cancer. While the battle against cancer is complex, advancements like DiFC provide the tools essential for meeting this challenge. As this technology evolves, it promises to lead to more effective cancer therapies and a future where cancer may no longer be a life-threatening condition. 

Related Links:
Northeastern University
Dartmouth College

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
H-FABP Test
Finecare H-FABP Rapid Quantitative Test
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.