We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Combined Nanoparticle and Statin Therapy Eliminates Atherosclerotic Plaques

By LabMedica International staff writers
Posted on 29 Sep 2008
Cardiovascular disease researchers have developed a nanoparticle-based technique for shrinking and eliminating atherosclerotic plaques.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) worked with a line of rabbits that became hyperlipidemic and developed atherosclerotic plaques when fed a high fat diet. The experimental therapy to treat this condition comprised paramagnetic nanoparticles coated with the antiangiogenic drug fumagillan. In some experiments, treatment with the nanoparticles was combined with the administration of the cholesterol-lowering statin atorvastatin. Cardiac magnetic resonance (CMR) molecular imaging was used to monitor the effectiveness of the treatment.

Results were published in the September 15, 2008, issue of the Journal of the American College of Cardiology (JACC): Cardiovascular Imaging. They showed that in a first experiment the fumagillin nanoparticles alone reduced plaque sizes by 50% to 75% after one week and maintained this effect for three weeks regardless of diet or drug dose. In the second study, atherosclerotic rabbits receiving statin alone had no antiangiogenic benefit after eight weeks. The nanoparticles decreased aortic angiogenesis for three weeks as in the first study, and re-administration on week four reproduced the three-week antiangiogenic response with no carry-over benefit. However, atorvastatin and two doses of fumagillin nanoparticles (at zero and four weeks) achieved marked and sustainable antiangiogenesis. Microscopic studies corroborated the high correlation between CMR signal and plaque size.

"Our past research showed that fumagillin nanoparticles reduced blood vessel formation at the site of arterial plaques in experimental rabbits after one week,” explained senior author Dr. Gregory Lanza, professor of medicine and biomedical engineering at Washington University School of Medicine. "In this study, we tested how long that effect lasts and if it could be extended by statins. We saw that statins sustain the acute inhibition of blood vessel growth produced by the fumagillin nanoparticles within the plaque.

Because nearly half of patients experiencing their first heart attack die soon after, our goal is to prevent or greatly delay clinically significant atherosclerotic disease. We hope to achieve this by a personalized nanomedicine approach that risk-stratifies patients and affords safe, targeted delivery of potent compounds that block progression in high-risk patients. This would be followed by management of the disease with standard-of-care drugs and periodic MRI monitoring of disease progression. We plan to conduct clinical trials to test this idea.”

Related Links:
Washington University School of Medicine



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.