We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Fusion Protein Proposed as Prostate Cancer Biomarker

By LabMedica International staff writers
Posted on 14 Oct 2019
Print article
Image: Human Kallikrein 4 (KLK4) protein complexed with nickel and p-aminobenzamidine  (Photo courtesy of Wikimedia Commons).
Image: Human Kallikrein 4 (KLK4) protein complexed with nickel and p-aminobenzamidine (Photo courtesy of Wikimedia Commons).
A novel gene fusion product has been proposed as a biomarker for the non-invasive diagnosis of prostate cancer.

Investigators at the Henry Ford Health System (Detroit, MI, USA) recently presented the functional characterization of pseudogene-associated recurrent gene fusion in prostate cancer. The fusion gene KLK4-KLKP1 was formed by the fusion of the protein-coding gene KLK4 (Kallikrein 4) with the noncoding pseudogene KLKP1.

Pseudogenes are segments of DNA that are related to real genes. Pseudogenes have lost at least some functionality, relative to the complete gene, in cellular gene expression or protein-coding ability. Pseudogenes often result from the accumulation of multiple mutations within a gene whose product is not required for the survival of the organism, but can also be caused by genomic copy number variation (CNV). Although not fully operational, pseudogenes may be functional, similar to other kinds of noncoding DNA, which can perform regulatory tasks.

Currently, diagnostic tests for prostate cancer are not sufficiently specific to be able to differentiate individuals without prostate cancer, those with low risk disease that is unlikely to be of clinical significance, and those with disease that should be treated. To rectify this situation, the investigators carried out a study that began with the screening of a cohort of 659 patients (380 Caucasian American; 250 African American, and 29 patients from other races).

Results of the screen revealed that the KLK4-KLKP1 gene fusion product was expressed in about 32% of prostate cancer patients. Furthermore, screening of patient urine samples showed that KLK4-KLKP1 could be detected non-invasively in urine.

Development of an antibody specific to the KLK4-KLKP1 fusion protein confirmed the expression of the full-length KLK4-KLKP1 protein in prostate tissues. In vitro and in vivo functional assays to study the oncogenic properties of KLK4-KLKP1 confirmed its role in cell proliferation, cell invasion, intravasation, and tumor formation.

"The unique feature of this fusion gene is the conversion of the noncoding pseudogene KLKP1 into a protein coding gene, and its unique expression in about 30% of high Gleason grade prostate cancer," said senior author Dr. Nallasivam Palanisamy, associate scientist in cancer research at the Henry Ford Health System. "Like other ETS family gene fusions, KLK4-KLKP1 can also be detected in the urine samples of patients with prostate cancer, enabling non-invasive detection of prostate cancer. Given the unique feature of this fusion, prostate cancer specific expression, oncogenic properties, and noninvasive detection, this novel gene fusion has the potential to be used as a biomarker for early detection of prostate cancer and a therapeutic target."

The gene fusion paper was published in the October 2019 issue of the journal Neoplasia.

Related Links:
Henry Ford Health System

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument
New
Hematology Analyzer
BH-6180

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.