We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder

By LabMedica International staff writers
Posted on 30 Sep 2019
Print article
Image: In a new study, researchers uncovered a gene network that is disrupted in ASD, noting that the disrupted gene network is related to fetal brain development in ASD models (Photo courtesy of University of California, San Diego).
Image: In a new study, researchers uncovered a gene network that is disrupted in ASD, noting that the disrupted gene network is related to fetal brain development in ASD models (Photo courtesy of University of California, San Diego).
An improperly functioning molecular network and related biomarkers are expected to help doctors diagnose autism spectrum disorder in young children and to predict the likely severity of symptoms that may develop.

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental mental disorders including autism and Asperger syndrome. Individuals “on the spectrum” often experience difficulties with social communication and interaction, and they often display restricted, repetitive patterns of behavior, interests, or activities. Symptoms are typically recognized between one and two years of age. Long-term problems may include difficulties in performing daily tasks, creating and keeping relationships, and maintaining a job.

ASD is usually diagnosed by subjective observation of clinical symptoms, and no reliable, practical, and objective markers of prognosis currently exist. Hundreds of genes have been implicated in ASD, but the mechanisms through which they contribute to the disorder have not been well defined.

Investigators at the University of California, San Diego (USA) extended the efforts aimed at developing objective tests for detection and prognosis of ASD by analyzing blood gene expression data from 302 one- to four-year-old boys with and without the diagnosis of ASD.

Results revealed the existence of a perturbed gene network that included genes that were highly expressed during fetal brain development. Furthermore, the degree of dysregulation in this network correlated with the severity of ASD symptoms in the toddlers. The network was also found to be dysregulated in ASD cellular models.

"The study shows that through analyses of gene expression from ordinary blood samples, it is possible to study aspects of ASD's fetal molecular origins, uncover the functional impact of hundreds of ASD risk genes that have been discovered over the years, and develop clinical tests of ASD diagnosis and severity prognosis," said senior author Dr. Nathan E. Lewis, associate professor of pediatrics and bioengineering at the University of California, San Diego. "The genetics of ASD are extremely heterogeneous. Hundreds of genes have been implicated, but the underlying mechanisms remain murky. These findings identify how ASD genetics dysregulate a core network that influences brain development at fetal and in the very early years of life and, consequently, the severity of later ASD symptoms."

The ASD study was published in the September 23, 2019, online edition of the journal Nature Neuroscience.

Related Links:
University of California, San Diego

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Urine cfDNA Extraction Kit
CloNext Urine cfDNA Extraction Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.