We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Researchers Quantify the Uptake and Distribution of Targeted Nanoparticles

By LabMedica International staff writers
Posted on 23 Dec 2009
Nanoparticles linked to targeting molecules are increasingly being cited as potential chemotherapeutic agents, and a recent publication has now quantified how such molecules are distributed to various organelles within a target cell.

Investigators at Purdue University (West Lafayette, IN, USA) worked with nanorods constructed of gold and a magnetic material and coated with trastuzumab, an anticancer drug used to used to treat breast cancer that has metastasized in women whose tumor cells produce an overabundance of human epidermal growth factor receptor 2 (HER2). The location of the nanorods in cultured breast cancer cells was determined by a combination of magnetic resonance spectrometry and microscopy. In some experiments, the drug was marked with a fluorescent molecule, and localization was quantified and diffusion times evaluated in different cell organelles by using fluorescence correlation spectroscopy (FCS).

Results published in the November 5, 2009, online edition of the journal ACS Nano revealed that, that in treated breast cancer cells the conjugated nanoparticles co-localized with the endosome and lysosome but not with the Golgi apparatus. The nanorods had similar intracellular localization characteristics as the fluorescently labeled drug. These findings not only lay the foundations for a quantitative understanding of the fate of nanoparticle-based targeting but also provide new insights into the rational design of nanoparticle delivery systems for effective treatment.

"Each nanoparticle acts like a deliverer of a mail package, or dose, of the drug directly to the appropriate location," said senior author Dr. Joseph Irudayaraj, professor of biological engineering at Purdue University. "We have demonstrated the ability to track these nanoparticles in different cellular compartments of live cells and show where they collect quantitatively. Our methods will allow us to calculate the quantities of a drug needed to treat a cancer cell because now we know how these nanoparticles are being distributed to different parts of the cell."

Related Links:
Purdue University



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.