We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electrical Impedance Measures Physiological Changes in Skeletal Muscle Thickness

By LabMedica International staff writers
Posted on 19 May 2011
Changes in myotube thickness were measured by measuring cellular electrical impedance.

Tracking physiological changes in skeletal muscle thickness is a direct and unbiased approach in screening therapeutic compounds that prevent skeletal muscle atrophy or induce hypertrophy. In drug screening, it would be beneficial to find novel treatments that prevent muscle atrophy and other diseases associated with any morphologic change in cell shape.

Both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlated well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance.

Sergey Rakhilin PhD of Novartis (Basel, Switzerland) and colleagues used the xCELLigence system from Roche (Penzberg, Germany) to show that both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlate well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance. According to the study, impedance can be used as a reliable and sensitive biomarker for myotube atrophy or hypertrophy.

The study appeared online on April 14, 2011 in the Journal of Biomolecular Screening.

In the past, it was difficult to estimate accurate cell thickness for a couple of reasons. One is the extreme heterogeneity of the myotube cellular population and therefore the lack of a regular distribution of perturbed myotubes. Another reason is the fact that differentiated myotubes form a confluent layer, which makes it difficult to estimate parameters of individual cells. In addition, most of the atrophy or hypertrophy-induced changes in cell thickness are relatively small (less than twofold) and therefore hard to detect with low statistical error. Electrical impedance measurement overcomes these hurdles and offers a reliable method to determine cell thickness.

Related Links:
Novartis
Roche



New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Troponin I Test
Quidel Triage Troponin I Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.