We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Rapid Throughput Method Determines the Risk of Drug Cardiotoxicity

By LabMedica International staff writers
Posted on 01 Aug 2011
A recent paper described a new high-throughput method for determining at an early phase in the development process the potential of a candidate drug to have a cytotoxic effect on heart cells.

Cardiotoxicity is the reason why roughly one third of new pharmaceuticals are withdrawn from the market and why many compounds fail in late-stage clinical testing. To date, however, there has not been a rapid and accurate method for assaying the cardiotoxicity of potential drug candidates.

In the current study, which was published in the June 20, 2011, online edition of the journal Toxicological Sciences, investigators at Roche (Nutley, NJ, USA) described a high-throughput functional assay employing a monolayer of beating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay system was based on the Roche xCELLigence Cardio Instrument. This instrument used 96-well plates with interdigitated electrode arrays to assess impedance, and the rhythmic, synchronous contractions of the iPSC-CMs were detected.

The xCELLigence Cardio System is powered by proprietary software and it employs 96-well E-plates to measure electronic cell impedance using sensor electrodes. Computer-controlled signal generation, automatic frequency scanning, and a measurement rate of 12.9 milliseconds per 96-well plate, enable high-speed, precise detection of changes in cardiac cell behavior.

Treatment of iPSC-CMs with 28 different compounds with known cardiac effects resulted in compound-specific changes in the beat rate and/or the amplitude of the impedance measurement. Changes in impedance for the compounds tested were comparable to the results from a related technology, electric field potential assessment obtained from microelectrode arrays (MEA). Using the results from the set of compounds, an index of drug-induced arrhythmias was calculated, enabling the determination of a drug's proarrhythmic potential.

“We found that measuring impedance provides a rapid means of interrogating a drug’s deleterious effect on human cardiac function, and not only helps us in early discovery safety assessment, but opens up new opportunities for investigating, cardiac biology, cell signaling, and disease pathogenesis,” said senior author Dr. Kyle Kolaja, director of the early and investigative safety, nonclinical safety, department at Roche. “More importantly, human pluripotent stem cell-based predictive toxicity assays will help researchers predict potential safety issues of promising drug candidates early in the development process and provide insight into the mechanisms of drug-induced organ toxicity.”

Related Links:

Roche



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
H.pylori Test
Humasis H.pylori Card
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.