We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Technology Developed for Mapping Blood Vessels May Aid Cancer Research

By LabMedica International staff writers
Posted on 08 Dec 2011
Similar to healthy tissue, tumors flourish on nutrients carried to them by the blood stream. The fast growth of new blood vessels is a key characteristic of cancer, and new research has demonstrated that suppressing blood vessel growth can also keep tumors from growing. To determine better the relationship between cancer and the vascular system, scientists are making detailed maps of the entire network of blood vessels in organs.

Regrettably, the current mapping process is time-consuming: using traditional methods, mapping a 1-cm block of tissue can take months. In a paper published in the October 2011 issue of the Optical Society’s (OSA) open-access journal Biomedical Optics Express, computational neuroscientists from Texas A&M University (College Station, USA), along with collaborators at the University of Illinois (Urbana-Champaign, USA) and Kettering University (Flint, MI, USA), described a new system, evaluated in mouse brain samples, that considerably reduces that time.

The technology employs a technique called knife-edge scanning microscopy (KESM). First, blood vessels are filled with ink, and the whole brain sample is embedded in plastic. Next, the plastic block is placed onto an automated vertically moving stage. A diamond knife shaves a very thin slice -one micrometer or less--off the top of the block, imaging the sample line by line at the tip of the knife. Each tiny movement of the stage triggers the camera to take a picture. In this way, the researchers can get the full 3D structure of the mouse brain’s vascular network--from arteries and veins down to the smallest capillaries--in less than two days at full production speed. In the future, the investigators plan to augment the process with fluorescence imaging, which will allow researchers to tie brain structure to function.

Related Links:
Texas A&M University
University of Illinois
Kettering University



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Coagulation Analyzer
CS-2400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.