We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Statistical Study Characterizes Patterns of Cancer Chromosome Aneuploidy

By LabMedica International staff writers
Posted on 07 Feb 2012
A large statistical study of cancer genome karyotypes has revealed a pattern linking gain or loss of chromosomes (aneuploidy) in more than 60 different classes of the disease.

Chromosomal aneuploidy is the most common abnormality in cancer. While certain aberrations, most commonly translocations, are known to be strongly associated with specific cancers and contribute to their formation, most aberrations appear to be nonspecific and arbitrary, and do not have a clear effect. The understanding of chromosomal aneuploidy and its role in tumorigenesis is a fundamental open problem in cancer biology.

Loss or gain of chromosomes is usual detrimental or fatal to an organism. Yet, most cancers thrive with bizarre alterations of chromosome number. To understand this phenomenon better, investigators at Tel Aviv University (Israel) systematically studied the characteristics of chromosomal aberrations in over 15,000 cancer karyotypes over 62 cancer classes.

Results published in the June 29, 2011, online edition of the journal Genome Biology revealed a very high co-occurrence rate of chromosome gains with other chromosome gains, and of losses with losses. Gains and losses rarely showed significant co-occurrence. This finding was consistent across cancer classes and was confirmed on an independent comparative genomic hybridization dataset of cancer samples.

“In cancer, there are many cases of extra or missing chromosomes. Yet cancer cells thrive more effectively than other cells,” said senior author Dr. Ron Shamir, professor of computer science at the University of Tel Aviv. “Hopefully future investigation into these chromosomal aberrations will give researchers more clues into why something that is so detrimental to our healthy development is so beneficial to this disease. Cancer is the result of sequences of events, each causing the genome to become more mutated, mixed, and duplicated. Tracking these changes could aid our understanding of the driving forces of cancer's progress.”

Related Links:
Tel Aviv University





Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.