Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ion Transport Protein Linked to Brain Cancer Cell Migration and Invasion

By LabMedica International staff writers
Posted on 22 May 2012
By elaborating the molecular interactions of the ion transport protein NKCC1(Na+-K+-Cl-cotransporter 1) cancer researchers have garnered new insights into the forces that drive glioblastoma multiforme cell migration and invasion.

Glioblastoma multiforme (GBM) is an aggressive brain tumor, fatal within one year from diagnosis in most patients despite intensive treatment with surgery, radiation, and chemotherapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment.

NKCC proteins are membrane transport proteins that transport sodium (Na), potassium (K), and chloride (Cl) ions across the cell membrane. They maintain electroneutrality by moving two positively charged solutes (sodium and potassium) alongside two parts of a negatively charged solute (chloride). NKCC1 is known to regulate cell volume and intracellular chloride concentration and to play an important role in brain tumor-cell invasion.

Researchers at Johns Hopkins University (Baltimore, MD, USA) investigated (1) whether the expression of NKCC1 in human tumors correlated with tumor grade; (2) whether NKCC1 affected cell contractility and migration; (3) whether NKCC1 could have an effect on the interaction between the cells and the cells' adhesion substratum; and (4) whether a signaling mechanism involved in the regulation of NKCC1 by promigratory factors existed in GB cells.

Results published in the May 1, 2012, online edition of the journal PLoS Biology revealed that in addition to its conventional function as an ion transporter, NKCC1 also interacted with the cytoskeleton and affected brain tumor-cell migration by acting as an anchor that transduced contractile forces from the plasma membrane to the extracellular matrix en route to cell migration. Regulation of NKCC1 by a family of unconventional enzymes, the WNK kinases, was an important factor that affected the activity of NKCC1 and determined the invasive ability of brain tumor cells. NKCC1 expression correlated with in vivo glioma aggressiveness, and the transporter activity modulated migration speed and invasiveness of cells derived from various human GBs.

“The biggest challenge in brain cancer is the migration of cancer cells. We cannot control it,” said senior author Dr. Alfredo Quinones-Hinojosa, associate professor of neurosurgery and oncology at Johns Hopkins University. “If we could catch these cells before they take off into other parts of the brain, we could make malignant tumors more manageable, and improve life expectancy and quality of life. This discovery gives us hope and brings us closer to a cure.”

Related Links:
Johns Hopkins University




Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.