Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Findings Implicate Circular RNA in the Development of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 28 Sep 2014
A recent paper described new findings that shed light on the production and function of circular RNA molecules (circRNA) in animal neuronal tissue.

CircRNA is a type of noncoding RNA that, unlike linear RNA, forms a covalently closed continuous loop. In circular RNA the 3' and 5' ends normally present in an RNA molecule have been joined together. This feature confers numerous properties to circular RNAs, many of which have only recently been identified. Though many of these circular RNAs arise from otherwise protein coding genes, circular RNAs produced in the cell have not been shown to code for proteins.

Investigators at The Hebrew University of Jerusalem (Israel) reported in the September 18, 2014, online edition of the journal Molecular Cell that animal circRNAs were generated co-transcriptionally and that their production rate was mainly determined by intronic sequences—filler DNA that separates coding regions on the chromosomes.

The investigators demonstrated that the process of circularization and that of normal splicing competed against each other, and that these mechanisms were tissue specific and conserved in animals. To further refine these findings, they concentrated on the gene for the protein muscleblind (muscleblind-like splicing regulator 1), which generates circularized RNA in flies and humans. They found that this circRNA (circMbl) and its flanking introns contained conserved muscleblind binding sites, which were strongly and specifically bound by muscleblind. Modulation of muscleblind levels strongly affected circMbl biosynthesis, and this effect was dependent on the muscleblind binding sites.

Since defects in muscleblind function have been linked to the severe degenerative disease myotonic dystrophy and since high levels of circRNAs are found in brain tissue, it may be that these molecules play a role in development of myotonic dystrophy and possibly other neurodegenerative diseases.

Senior author Dr. Sebastian Kadener, senior lecturer in biological chemistry at The Hebrew University of Jerusalem, said, "This research is significant from several perspectives. By mapping how circRNAs are produced, it helps advance our understanding of general molecular biology. In addition, it might be strongly relevant for understanding and eventually treating degenerative diseases both in muscle and the brain."

Related Links:

The Hebrew University of Jerusalem



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Silver Member
ACTH Assay
ACTH ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.