Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Findings Implicate Circular RNA in the Development of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 28 Sep 2014
A recent paper described new findings that shed light on the production and function of circular RNA molecules (circRNA) in animal neuronal tissue.

CircRNA is a type of noncoding RNA that, unlike linear RNA, forms a covalently closed continuous loop. More...
In circular RNA the 3' and 5' ends normally present in an RNA molecule have been joined together. This feature confers numerous properties to circular RNAs, many of which have only recently been identified. Though many of these circular RNAs arise from otherwise protein coding genes, circular RNAs produced in the cell have not been shown to code for proteins.

Investigators at The Hebrew University of Jerusalem (Israel) reported in the September 18, 2014, online edition of the journal Molecular Cell that animal circRNAs were generated co-transcriptionally and that their production rate was mainly determined by intronic sequences—filler DNA that separates coding regions on the chromosomes.

The investigators demonstrated that the process of circularization and that of normal splicing competed against each other, and that these mechanisms were tissue specific and conserved in animals. To further refine these findings, they concentrated on the gene for the protein muscleblind (muscleblind-like splicing regulator 1), which generates circularized RNA in flies and humans. They found that this circRNA (circMbl) and its flanking introns contained conserved muscleblind binding sites, which were strongly and specifically bound by muscleblind. Modulation of muscleblind levels strongly affected circMbl biosynthesis, and this effect was dependent on the muscleblind binding sites.

Since defects in muscleblind function have been linked to the severe degenerative disease myotonic dystrophy and since high levels of circRNAs are found in brain tissue, it may be that these molecules play a role in development of myotonic dystrophy and possibly other neurodegenerative diseases.

Senior author Dr. Sebastian Kadener, senior lecturer in biological chemistry at The Hebrew University of Jerusalem, said, "This research is significant from several perspectives. By mapping how circRNAs are produced, it helps advance our understanding of general molecular biology. In addition, it might be strongly relevant for understanding and eventually treating degenerative diseases both in muscle and the brain."

Related Links:

The Hebrew University of Jerusalem



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.