Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Structure of Integral Membrane Proteins Readily Solved Using an Alternative In Meso In Situ Serial Crystallography Technique

By LabMedica International staff writers
Posted on 16 Jun 2015
A recent paper discussed the benefits of using synthetic cyclic olefin copolymer (COC) plates to replace glass as the base for generation and growth of crystals of membrane and soluble proteins for high-resolution X-ray crystallographic structure determination.

Membrane proteins perform critical functions in living cells related to signal transduction, transport, and energy transformations, and, as such, are implicated in a multitude of malfunctions and diseases. However, the structural and functional understanding of membrane proteins lags behind that of soluble proteins, mainly, due to difficulties associated with their solubilization and generation of diffraction quality crystals. Crystallization in lipidic mesophases (also known as in meso or LCP crystallization) is a promising technique, which was successfully applied to obtain high resolution structures of microbial rhodopsins, photosynthetic proteins, outer membrane beta barrels, and G protein-coupled receptors.

A mesophase is a phase of matter intermediate between a true liquid and a true solid that exists in a liquid crystal. In meso crystallization takes advantage of a native-like membrane environment and typically produces crystals with lower solvent content and better ordering as compared to traditional crystallization from detergent solutions. The method is not difficult, but requires an understanding of lipid phase behavior and practice in handling viscous mesophase materials.

Investigators at Trinity College (Dublin, Ireland) described an alternative approach for the in meso in situ serial crystallography (IMISX) method, which showed that the use of COC plates provided many advantages over glass plates and was compatible with high-throughput in situ measurements. The novel IMISX technique was demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein.

The synthetic COC was chosen for several reasons. To begin with, it is commercially available in sheets of varying thicknesses and is inexpensive. Further, it is relatively watertight, optically transparent, UV-transmitting and non-birefringent. As a plastic, COC is chemically inert and is a weak absorber and scatterer of X-rays.

A paper published in the June 2015 online edition of the journal Acta Crystallographica D described the IMISX protocol, which required less than 10 micrograms of protein and generated structures with resolutions ranging from 0.18 to 0.28 nanometers.

Senior author Dr. Martin Caffrey, professor of membrane structural and functional biology at Trinity College, said, "This is a truly exciting development. We have demonstrated the method on a variety of cell membrane proteins, some of which act as transporters. It will work with existing equipment at a host of facilities worldwide, and it is very simple to implement. The best part of this is that these proteins are as close to being "live" and yet packaged in the crystals we need to determine their structure as they could ever be. As a result, this breakthrough is likely to supplant existing protocols and will make the early stages of drug development considerably more efficient."

Related Links:
Trinity College



New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.