We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Identifies Mechanism Underlying a Form of Sensory Nerve Damage

By LabMedica International staff writers
Posted on 27 Apr 2016
Researchers have discovered a mechanism that underlies induction of peripheral neuropathy (PN) by the chemotherapeutic agent paclitaxel, raising the prospects for developing treatments for this and possibly also for certain other forms of PN. The work may also lead to companion diagnostics to identify patients who would benefit from these new therapies.

The study was led by Sandra Rieger, PhD, of Mount Desert Island Biological Laboratory (Bar Harbor, ME, USA). "Our goal is to develop treatments that activate the repair and regeneration of damaged tissues," said Kevin Strange, PhD, president, MDI Biological Laboratory, "Sandra Rieger's research has advanced that mission.”

Peripheral nerve damage is a common condition (e.g. ~8 million people are affected in the US) that causes increasing pain and numbness and/or tingling in the hands and/or feet. Lack of understanding of underlying mechanisms has held back development of treatments. Drugs exist for the treatment of symptoms (e.g. pain relievers), but not for the condition itself, which can be caused by chemotherapy, diabetes, traumatic injury, heredity, and other conditions.

"The general thinking is that no single drug can be effective for the treatment of all PNs, which stem from multiple causes," said Dr. Rieger, "But our research indicates that there may potentially be a common underlying mechanism for some neuropathies affecting the sensory nervous system that could be manipulated with drugs targeting a single enzyme."

Dr.Rieger and other scientists at the institution's Davis Center for Regenerative Medicine study tissue repair, regeneration, and aging in a diverse range of organisms that have robust mechanisms to repair and regenerate lost and damaged tissues. In the new study, zebrafish were exposed to paclitaxel, used to treat ovarian, breast, lung, pancreatic, and other cancers. Paclitaxel-induced PN affects the majority of treated patients; however, those who are most severely affected (~30%) have to terminate chemotherapy early or reduce the dose, which may hinder cancer survival.

The researchers developed a larval zebrafish model of PN because the embryos develop rapidly and larval fish are translucent, ideal for studying progression of nerve degeneration in live animals. The results showed that paclitaxel induced degeneration of sensory nerve endings by damaging the epidermis (outer layer of skin), which is innervated by free sensory nerve endings that establish direct contact with skin cells. The degeneration was determined to be caused by perturbations in the epidermis due to an increase in the enzyme matrix-metalloproteinase 13 (MMP-13), which degrades the collagen between the cells. Increased MMP-13 activity may be triggered by oxidative stress, a hallmark of diabetic PN.

The zebrafish were treated with pharmacological agents that reduce MMP-13 activity, with the result that skin defects were improved and chemotherapy-induced nerve damage was reversed. Additional research will focus on effect of MMP-13 on PN in mammalian models. Studies are also underway in collaboration with Mayo Clinic (Rochester, MN, USA) to test the clinical relevance of these findings in humans. PN treatment using MMP-13- targeting compounds is now the subject of a provisional patent by MDI Biological Laboratory.

MMP-13 over-activation has also been linked to other disease conditions, including tendon injury, intestinal inflammatory, and cancer, suggesting that drugs developed to treat PN may yield other health benefits as well.

The study, by Lisse TS et al, was published March 28, 2016, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Mount Desert Island Biological Laboratory


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.