Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Statins Slow Growth of Cancers with p53 Structural Mutations

By LabMedica International staff writers
Posted on 08 Feb 2017
Cancer researchers have demonstrated the ability of cancer-lowering statin drugs to slow the growth of certain types of cancers with p53 mutations.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation, or if the p53 protein becomes inactivated. Investigators at the University of Kansas Medical Center looked for chemical compounds that could inhibit the activity of structurally mutated p53 proteins that can accelerate cancer progression, while not harming proteins produced by healthy p53 genes.

Toward this end, the investigators screened nearly 9,000 compounds - including 2,400 that were [U.S.] Food and Drug Administration-approved drugs – to identify any that might degrade mutant p53.

The investigators reported in the November 2016 issue of Nature Cell Biology that statins, cholesterol-lowering drugs such as Lipitor (atorvastatin), Crestor (rosuvastatin) and Mevacor (lovastatin), were degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. The statins impacted only structurally mutated (misfolded) p53, as opposed to p53 mutated at the site of DNA binding.

Statins act by competitively inhibiting the enzyme HMG-CoA reductase, the first committed enzyme of the mevalonate pathway. Because statins are similar in structure to HMG-CoA on a molecular level, they fit into the enzyme's active site and compete with the native substrate (HMG-CoA). This competition reduces the rate by which HMG-CoA reductase is able to produce mevalonate, the next molecule in the cascade that eventually produces cholesterol. By inhibiting HMG-CoA reductase, statins block the pathway for synthesizing cholesterol in the liver.

In the current study, the investigators found that specific reduction of mevalonate-5-phosphate by statins induced CHIP (C terminus of HSC70-Interacting Protein) ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutated p53 by impairing interaction of this protein with DNAJA1 (DNAJ heat shock protein family (Hsp40) member A1). DNAJA1 a member of the DNAJ family of proteins, which act as heat shock protein 70 co-chaperones. Heat shock proteins facilitate protein folding, trafficking, prevention of aggregation, and proteolytic degradation. Members of this family are characterized by a highly conserved N-terminal J domain, which mediates the interaction with heat shock protein 70 to recruit substrates and regulate ATP hydrolysis activity. Knockdown of DNAJA1 induced CHIP-mediated mutated p53 degradation, while its overexpression prevented statin-induced degradation of this protein.

In a study in which mice carrying human tumors expressing mutant p53, were treated with high doses of statins for 21 days, it was found that the tumors grew poorly in mice treated with statins compared to the controls, and that the statins worked only on structurally mutated p53, as opposed to p53 mutated at the site of DNA binding.

"We found that only the structural mutation is affected," said senior author Dr. Tomoo Iwakuma, associate professor of cancer biology at the University of Kansas Medical Center. "Which explains why clinical studies with statins were inconclusive. Mutant p53 makes human cancer cells more metastatic and resistant to chemotherapy. That is a primary reason to get rid of it -- to improve survival in cancer patients."


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.