Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




RNA Library to Enhance CRISPR/Cas9 Gene Editing

By LabMedica International staff writers
Posted on 31 Jul 2017
Print article
Image: CRISPR/Cas9 is a reprogrammable DNA cutting machine that is being used to edit genomes in many organisms for research purposes. A new resource provides a library of guide sequences that significantly increases CRISPR\'s specificity, while limiting off-target effects (Photo courtesy of Advanced Analytical Technologies).
Image: CRISPR/Cas9 is a reprogrammable DNA cutting machine that is being used to edit genomes in many organisms for research purposes. A new resource provides a library of guide sequences that significantly increases CRISPR\'s specificity, while limiting off-target effects (Photo courtesy of Advanced Analytical Technologies).
A newly assembled library of RNA sequences was designed to maximize the usefulness of the CRISPR/Cas9 gene-editing tool.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at Cold Spring Harbor Laboratory (NY, USA) and the University of Cambridge (United Kingdom) described a new CRISPR resource in the July 20, 2017, issue of the journal Molecular Cell.

The investigators combined a machine-learning approach with other strategies to optimize knockout efficiency with the CRISPR/Cas9 system. In addition, they developed a multiplexed sgRNA expression strategy that promoted the functional deletion of single genes and allowed for combinatorial targeting. These strategies were combined to design and construct a genome-wide, sequence-verified, arrayed CRISPR library.

The newly assembled library of RNA sequences will be available to direct the CRISPR-Cas9 complex to cut DNA with precision here-to-fore unattainable. This increases the likelihood that a CRISPR "cut" (or series of related cuts) will have the intended functional impact.

"We have combined a machine learning approach with other strategies to optimize knock-out efficiency," said senior author Dr. Greg Hannon, professor of molecular cancer biology at the University of Cambridge. "The CRISPR library also facilitates multiplexing of experiments, as well as combinatorial targeting."

Related Links:
Cold Spring Harbor Laboratory
University of Cambridge
Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
New
Ultra-Low Temperature Freezer
iUF118-GX

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.