We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Hydrogel Slows Tumor Growth and Prevents Recurrence

By LabMedica International staff writers
Posted on 06 Mar 2018
A team of cancer researchers developed a novel hydrogel device designed to be injected at the site of a tumor, where it forms a scaffold for sequential release of chemotherapeutic and immunotherapeutic drugs.

Clinical experience has shown that patients with low-immunogenic tumors respond poorly to immune checkpoint blockade (ICB) treatments that target the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway. On the other hand, patients responding to ICB can experience various unpleasant side effects.

Investigators at the University of North Carolina (Chapel Hill, USA) addressed both of these concerns by maximizing drug access to tumors while minimizing systemic exposure to the drugs. To do this, they engineered a therapeutic scaffold that, when formed in situ, allowed the local release of gemcitabine (GEM) and an anti–PD-L1 blocking antibody (aPDL1) with distinct release kinetics. The scaffold consisted of a reactive oxygen species (ROS)-degradable hydrogel that released therapeutics in a programmed manner within the tumor microenvironment (TME), which contained abundant ROS.

The investigators reported in the February 21, 2018, online edition of the journal Science Translational Medicine that, once in place, the hydrogel first released cytotoxic chemotherapy, which killed some cancer cells before releasing most of an immune checkpoint inhibitor, which then stimulated antitumor immunity. The investigators employed this approach to inhibit growth of primary tumors in mouse models as well as to prevent tumor recurrence after surgery.

"We have created a simple method to use chemotherapy while leveraging the biology of the tumor and our natural defense against foreign invaders to beat back tumor development with limited side effects," said senior author Dr. Zhen Gu, associate professor of biomedical engineering at the University of North Carolina. "We have a lot more work to do before human clinical trials, but we think this approach holds great promise."

"Regarding the potential of this approach, scientists should further investigate the biocompatibility of using the gel scaffold for clinical benefit," said Dr. Gu. "Meanwhile, we will optimize the dosages of combination drugs as well as treatment frequencies."

Related Links:
University of North Carolina


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.