We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nano-Imaging Reveals Links to Regulation of Bone Mineralization

By LabMedica International staff writers
Posted on 16 Apr 2018
A team of bioengineers applied a hi-tech nano-imagining technique to determine the mechanisms involved in the initialization and regulation of the process of bone mineralization.

Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors.

To develop a better understanding of the mechanisms underlying bone mineralization, investigators at Washington University (St. Louis, Mo, USA) turned to the Advanced Photon Source at the Argonne National Laboratory (Lemont, IL, USA). They used this tool to apply the technique of in situ small-angle X-ray (SAXS) scattering in order to study calcium phosphate nucleation in the collagen gap (a space about two nanometers high by 40 nanometers wide).

They investigators described in the March 6, 2018, online edition of the journal Nature Communications the results they had obtained using in situ X-ray scattering observations and classical nucleation theory. They reported obtaining nucleation energy barriers to intra- and extrafibrillar mineralization (IM and EM). Polyaspartic acid, an extrafibrillar nucleation inhibitor, increased interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lowered the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guided the two-dimensional morphology and structure of bioapatite and changed the nucleation pathway by reducing the total energy barrier.

“When we understand how new bone forms, we can modulate where it should form,” said senior author Dr. Young-Shin Jun, professor of energy and environmental and chemical engineering at Washington University. “Previously, we thought that collagen fibrils could serve as passive templates, however, this study confirmed that collagen fibrils play an active role in biomineralization by controlling nucleation pathways and energy barriers. If we can tweak the chemistry and send signals to form bone minerals faster or stronger, that would be helpful to the medical field.”

“Confined space is a somewhat exotic space that we have not explored much, and we are always thinking about new material formation without any limitation of space,” said Dr. Jun. “However, there are so many confined spaces, such as pores in geomedia in subsurface environments or in water filtration membranes, where calcium carbonate or calcium sulfate form as scale. This paper is a snapshot of one health aspect, but the new knowledge can be applied broadly to energy systems and water systems.”

Related Links:
Washington University
Argonne National Laboratory


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.