We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Norovirus Binding Requires Attachment to Fucose Residues

By LabMedica International staff writers
Posted on 09 Aug 2018
Norovirus, the most common cause of gastroenteritis worldwide, depends on binding to fucose molecules in order to attach to and invade cells in the human digestive tract.

Studies have found that norovirus infection routes in humans require binding of the pathogen to gastrointestinal epithelia via recognition of blood group–active mucin-typeO-glycans (fucose residues) as the initiating and essential event. In this regard, human milk oligosaccharides (HMOs) have been shown to be competitors of major importance to norovirus binding.

Human milk oligosaccharides form the third most abundant solid component (dissolved or emulsified or suspended in water) of human milk after lactose and fat. Approximately 200 structurally different human milk oligosaccharides are known. The composition of human milk oligosaccharides in breast milk is individual to each mother and varies over the period of lactation with the dominant oligosaccharide in 80% of all women being 2'-fucosyllactose.

In contrast to the other components of breast milk that are absorbed by the infant through breastfeeding, HMOs are indigestible for the newborn child. However, they have a prebiotic effect and serve as food for intestinal bacteria. The dominance of these intestinal bacteria in the gut reduces colonization with pathogenic bacteria and thereby ensures a healthy intestinal flora) and reduced risk of dangerous intestinal infections. Recent studies also suggest that HMOs significantly lower the risk of viral and bacterial infections and thus diminish the chance to develop diarrhea and respiratory diseases.

In order to identify the structural elements required for norovirus binding, investigators at the University of Cologne (Germany) used capsid binding-based arrays to focus on fractions of high-molecular mass HMOs with high fucose contents.

The investigators reported in the July 27, 2018, issue of the Journal of Biological Chemistry that HMO fractions with the strongest binding capacities contained hepta- to decasaccharides expressing branches with terminal blood group H1 or Lewis-b antigen. In other words, the strength of the binding between the norovirus protein and HMOs did not depend on the specific structure of the HMO, or the types of fucose molecules it contained. Rather, what mattered was, in principle, how many fucose residues it contained.

"The binding of the virus is not dependent in any way on further structural elements of HMOs," said first author Dr. Franz-Georg Hanisch, a researcher at the University of Cologne. "It's only the terminal fucose which is recognized, and the more fucose at higher densities is presented, the better is the binding."

Related Links:
University of Cologne


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.