We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CRISPR Variant Enables More Accurate Genome Editing

By LabMedica International staff writers
Posted on 13 Aug 2018
Results of a recent study suggested that inherent binding properties of the Cas12a enzyme make it a better choice for gene editing purposes than the currently used CRISPR/Cas9 combination.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Despite the widespread usage of CRISPR/Cas9, DNA cleavage at off-target sites that resemble the target sequence continues to be a pervasive problem that remains poorly understood mechanistically.

To solve the problem of off-target DNA cleavage, investigators at the University of Texas at Austin (USA) used quantitative kinetics to dissect the reaction steps of DNA targeting by Cas12a (also known as Cpf1 or Centromere and Promoter Factor 1). CRISPR/Cpf1 differs from CRISPR/Cas9 in a number of key ways. Cpf1 is much smaller than the Cas9 enzyme, which makes it easier to package inside a virus and therefore easier to deliver to muscle cells. It also recognizes a different sequence of DNA than Cas9 does, which provides greater flexibility in terms of use.

The investigators reported in the August 2, 2018, online edition of the journal Molecular Cell that Cas12a bound DNA tightly in two kinetically separable steps and discriminated strongly against mismatches along most of the DNA target sequence. In mechanistic terms, the investigators explained that Cas9, initially bound base pairs tightly together, but after the first seven or eight base pairs in the genomic target it paid less attention. This implied that Cas9 could overlook mismatches that could lead it to edit the wrong part of the genome. In contrast, Cas12a formed bonds that were relatively weak. Thus, it required a good match all along the target molecule to hold the complex together long enough to make an edit. Therefore it was much more likely to edit only the intended part of the genome.

"It makes the process of base-pair formation more reversible," said senior author Dr. Rick Russell, professor of molecular biosciences at University of Texas at Austin. "In other words, Cas12a does a better job of checking each base pair before moving on to the next one. After seven or eight letters, Cas9 stops checking, whereas Cas12a keeps on checking out to about 18 letters."

Related Links:
University of Texas at Austin


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.